UNIVERSITY OF ABERDEEN

SESSION 2004-05

Degree Examination in EG 3567 Communications Engineering 1A

Monday 30 th May 2004 (9:00 pm - 12:00 noon)

Notes:

- (i) Candidates are permitted to use approved calculators
- (ii) Candidates are not permitted to use the Engineering Mathematics Handbook
- (iii) An information sheet providing details of protocol headers is provided

Candidates should attempt THREE questions. All questions carry 20 marks.

1.	(a) Use the <i>Open Systems Interconnection Reference Model</i> to explain the operation of the <i>Transport Layer</i> .	of [6 marks]
	(b) Provide two examples of protocols that operate at the Transport Layer.	[2 marks]
	(c) The " <i>ping</i> " program sends a message of 1000B, what is the total size of the Ether	met frame? [4 marks]
	(c) By comparing the operation of the " <i>ping</i> " program and the " <i>traceroute</i> " program the key differences between these two programs.	ns, describe [8 marks]
2.	(a) Explain the algorithm used by a <i>Network Interface Card (NIC)</i> when transmitting shared Ethernet cable.	frames over a [10 marks]
	(b) How is the algorithm modified when using the Full Duplex mode?	[2 marks]
	(c) Is it possible to use the full duplex mode with (i) a Hub (ii) a Switch?	[2 marks]
	(d) Using suitable diagrams, explain the purpose of the Ethernet frame <i>Type</i> field.	[4 marks]
	(e) What types of cable are supported in the Gigabit Ethernet specification?	[2 marks]
3.	(a) An End System sends 10 packets per second using the User Datagram Protocol (UDP) over a full duplex 100 Mbps Ethernet LAN. Each message is 1000 bytes in size (including the UDP Protocol Control Information).	
	(i) What is the throughput, when measured at the <i>Transport Layer</i>?(ii) Calculate the total frame size, and hence the <i>Utilisation</i> of the link.	[4 marks] [4 marks]
	(b) Why does Ethernet define a minimum frame size?	[2 marks]
	(c) Given that the Ethernet CRC-32 protects the integrity of frames sent across a <i>Loca Network</i> , why does a transport protocol also include a <i>Checksum</i> ?	<i>ıl Area</i> [4 marks]
	(d) Figure 1 shows a part of an Ethernet <i>Preamble</i> . Describe <i>Manchester Encoding</i> a explain which part of the waveform indicates the start of the MAC header.	nd use this to
	Voltage Time	(uS)

Figure 1: Waveform recorded on a coaxial Ethernet cable

[6 marks] *continued over* 4. Consider the network shown below in figure 2:

Figure 2: An Ethernet LAN

(a) Provide a diagram of this network clearly labelling each *Collision Domain* [4 marks]

- (b) Which End Systems are in the same *Broadcast Domain* as system B? [2 marks]
- (c) Sketch the contents of the *Address Resolution Protocol* (ARP) cache after the computer B has communicated with the computers A,B, and D, E, explaining the set of MAC addresses used. [4 marks]
- (d) If computer B is reconnected directly to the switch, does the ARP cache change? [2 marks]
- (e) Explain the role of the *Domain Name Server* when the computer C communicates with a remote server in the Internet. Your answer should include a diagram showing the sequence of packets exchanged at the start of this communication. [8 marks]
- 5. (a) 0100 5e00 000d 00e0 f726 3ff1 0800 45c0 0036 5a3f 0000 0167 226b 8b85 d064 e000 000d 2300 ad3c 0100 8b85 d0d2 0001 00d2

Figure 3: Hexadecimal dump of the Header of a Packet received on an Ethernet interface

Figure 3 shows a hexadecimal dump of the first bytes of an Ethernet frame, what is the Internet address of the End System that sent this frame? [4 marks]

Figure 4: An Internet Path between two End Systems, A and B

- (b) Explain how the Switch I (in figure 4) may dynamically build an Address Table. [6 marks]
- (c) What is meant by the term *Mulitcast*? How does the Switch I recognise a multicast frame sent by A? [4 marks]
- (d) Explain the term *Maximum Transmission Unit (MTU)*, and the *Path MTU Discovery* procedure used by the the client A, when sending to the server B. [6 marks]

TCP Packet