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REMOTE DEVICE
MANAGEMENT (RDM)

RDM Standardised as E1.20 (2010)

- RDM physical layer

- Packet format for RDM and the UID
- Communicating with devices

- Discovering the UIDs of devices

- RDM repeaters

WHY RDM¢?
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Before RDM, any change to Using RDM, devices can be
a device meant actually monitored and configuration
setting switches/controls can be changed remotely
on the device itself. using the bus.
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WHAT IS RDM?

Remote Device Management

Allows bi-directional communication to/from a device using
the DMX cable.

This can be used to:
- Build a list of all devices on a DMX bus
- Set a device's DMX base address (which slots to read)
- Set a device's DMX channel profile (what slots do)
- Monitor the status or faults reported by a device

- Download an upgrade to the device firmware

RDM HISTORY

Work started 2001, main spec 2010, updated 2023

Should the standard use two wires or four wires?

Soon after 2001 it was decided to use just two wires
Two-wire DMX cable was then common
It uses a half-duplex bus (one transmitter active at any time)

Each RDM device also has a Unique ID (not DMX address)

http://tsp.plasa.org/tsp/documents/docs/E I -20RDM_2006.pdf
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RDM BUS TERMINATION

A classical DMX sender is conected at one end of the DMX cable
In RDM, any of the 32 devices on the bus might send
The signal therefore travels in both directions along the cable

It is important to terminate BOTH ends of the cable with 120 Ohms



http://tsp.plasa.org/tsp/documents/docs/E1-20RDM_2006.pdf

RBM PHYSICAL TAER

Out logic out
(RDM when
RDM uses a Bi-directional EIA-485 bus e enanlegl
An RDM device uses tri-state drivers lagieiy

In

- This uses Half Duplex direction T .
Each device controls the direction of transmission:
(a) The master normally sends; Others normally listen.
(b) These roles can be reversed to allow equipment to send.
(c) There can be moments where there is no sender.
(d) There may be transients when more than one device tries

to send (in half-duplex these result in signal corruption).

HALF DUPLEX OPERATION

There are two roles assumed to enable an equipment to send:
(1) One device is the master - usually the DMX sender.

The master controls who can transmit to the bus.

The master initiates a communications request to a "slave” by
addressing the unit and then setting the transceiver to receive.

(2) The master listens for a response (receive mode).

The slave receiver recognises a control slot.

If the slot addresses the slave, it enables its own transmitter.
(8) Once data sent, the slave reverts back to receive mode.

Master resumes control after reception from slave (or a timeout).

RDM - HALF DUPLEX

Normal DMX Data [ I ]

RDM controller I
message

RDM response I

11
Forward - Forward

Direction
of transmission

Y

10
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RDM - IDLE TIMES

Timing between master and slave can be slightly delayed
Therefore small idle periods where the bus “floats”.

Time before start of next regular
control frame sent by the master

Z
11

Forward - Forward

Direction
of transmission

N/
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IS E"CONTROHEEE
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When the line is idle, it “floats” 16,28

Ty -
| | i
This makes a receiver vulnerable to noise Y Gd Tl
\\—30

\g“'

Instead, a bias network is added to ensure the line level > 245 mV
Line A is connected via bias resistance to GND
Line B isconnected via bias resistance to +5V

Of course, only do this once for each bus!
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CALCULATING BIAS

Each EIA-485 node has an input impedance of 12K. o % )

16

I

ry il
At EUS
Two 120 Ohm terminators - a combined 60 Ohm load. )\/Lg

.
~ s

32 nodes in parallel present load of 376 ohms.

Total load is therefore 51.8 ohms. C -

To maintain at least 245 mV between B & A line, needs a bias current of ~
4.7 mA to flow through this load.

A 5V supply needs a series resistance of 1063 Ohms, subtract 51.8
Ohms of bus loading, this leaves 1011 Ohms.

Placing half as a pull-up to 5V and half as a pull-down to ground gives a
bias of 505 Ohms, 510 Ohms to nearest preferred value.

RDM BIAS

Driven Bus |dle Bus

(sender active) (no sender)

PR e iy e
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THE PACKET FORMAT FOR RDM
AND THE VID

L T I]

An RDM packet is sent in a DMX frame with:
Start Code (value OxCC, 204 decimal)
RDM Header (24 slots);
Message Length; Source; Dest,; Command; Param.; etc
RDM Data Area (variable)

Checksum (2 slots) - 6-bit sum of all slot values
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IDENTIFYING RDM DEVICES

All RDM frames use a Start code of OxCC

“simple” devices already ignore non-zero start codes!

Each RDM device has a Unique ID (UID)
The UID is assigned by a manufacturer
This is not a DMX base address (position in the frame)

The UID is a globally unique identifier
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RDM PARAMETERS

Each device has:
A UID (permanently set by the manufacturer)
A flag to say whether the device is addressed

A flag to say whether the device is muted (see later)

A set of parameters stored in an EEPROM data (non-volatile):
The device DMX base address
The current profile (mapping slots to parameters)
Other configuration parameters (defined by the profile)

Other status parameters (e.g., temperature, current, time used)

RDM UNIQUE ID

All RDM equipment is uniquely identified:
Manufacturers assign a unique 6 byte UID
FFFF: FFFF FFFF (Broadcast)
A 2B Manufacturer ID is assigned to each manufacturer
UID = 2B Manufacturer ID + 4B Serial Number (Flat address)
2B Manufacturer ID: FFFF FFFF (All manufacturer systems)

DMX base address can be changed depending on the use
The ID is not the DMX base address

An RDM Device is addressed irrespective of DMX address
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RDM CHECKSUM

- Sender:

- Calculates the unsigned, modulo 0x10000, 16-bit additive
checksum of the entire packet slot data (from START Code
to end of frame)

- Places result in the Checksum field of the frame

- Receiver:

- Calculates the unsigned, modulo 0x10000, 16-bit additive
checksum of the entire packet slot data (from START Code to
end of frame)

- Compares result with the Checksum field of the frame

- Only if two match frame is OK, otherwise frame is discarded
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RDM PACKET FORMAT

365 Mon Feb 01 153601 2016
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Decode

g[gg[e RDM Header (24 slots), RDM Data, and Checksum

COMMUNICATING WITH RDM
DEVICES
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RDM COMMANDS

RDM devices do not respond to commands unless addressed

They do read DMX data sent with a start code of 0x00

To communicate with a specific device using RDM:
1. Address the device using the UID (“Listen" sent to the UID)

2. Write (set) or read (get) information stored in the set of parameters

3. Then the device is released (“Quiet”)

MASTER MUST KNOW UIDS

The master needs to know the UID of each receiver
Important to address each device
Important to know what equipment is on the bus.
L.e. parameters need to be interpreted in context.

Key question is how to find out what is connected! &
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RDM GET START ADDRESS

Listen (UID)

/

GET_Command
(DMX-start-address)

GET_Command_Response
(DMX-start-address,
<base addreses>)

Quiet

RDM SET START ADDRESS

Listen (UID)

/

SET_Command
(DMX-start-address,
<base address>)

SET_Command_Response
(DMX-start-address,
<base address>)

Quiet

Y

AV
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CONFG DMX ADDRESS

(. (.

SET DMX_START_ADDRESS 16

Slot Response from RDM device ...
e ‘ .‘ address now set to 16

Reliability requires checking address was set correctly

RDM GET SENSORVALUE

LISTEN <uid>
GET_Command \
(sensor) \
GET_Command_Response
/ (sensor, sensor-values)
QUIET \
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TIMING OF RESPONSES
Normal DMX Data [ NN ——T'me > T

RDM controller |

RDM response .

\dle H 1
Direction Forward BB rorward

of transmission

A “simple DMX” device ignores start code > zero

RDM takes time, this limits the maximum frame rate of sender.
Commands typically require only one receiver to respond
RDM not recommended during time critical communications
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RDM MASTER

The RDM master (controller)
Needs to find a list of the devices that respond to RDM
Discovery is used to ask devices to respond

Devices respond to discovery messages by sending their UID

(2"48).(2'47-1)

(2°482).(2482)  (248-1).(2'48-1)
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DISCOVERY - ONE DEVICE

DISCOVER

Discover_Response

\
/ (UID)

Once the UID is discovered the controller can address the device.

When more than one device responds, the Discover_response
will be corrupted by multiple devices sending at the same time!
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RDM DEVICE MUTE FLAG

Each RDM device has a MUTE Flag
The RDM bus controller can set or clear this MUTE Flag
DISC_UNMUTE (UID)
DISC_UNIQUE_BRANCH (UID-range)
Once set, the device does not respond to Discovery messages
This is used in the discovery algorithm in tow ways:
To resolve collisions (avoiding two replies at the same time)

To avoid discovered devices responding, once found.

RDM - UID DISCOVERY

Master discovers UID of each device on network.
Starts with DISC_UNMUTE FFFF: FFFF FFFF
- Tells all muted devices to respond
- Master clears its list of responders
RDM discovers devices polling
DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFILF]

- Tells all devices to respond:
No response? ... then there are no responders.
One response ... we've found the only responder (add to list).

Collision ... there is more than one responder!
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RDM - UID DISCOVERY

RDM then starts a binary search
- divides the search space into two halves:
DISC_UNIQUE_BRANCH [0000: 0000 0000 - 7FFF: FFFF FFFF]
- Do these devices have the first bit unset?
No response? ... there are no responders in bottom half.
One response ... we've found a responder, add to list.
Tell responder to mute, and expand the search range.
Collision ... there is more than one responder:
divide the range by two and loop...
Repeat for other half of space:
DISC_UNIQUE_BRANCH [8000: 0000 0000 - FFFF: FFFF FFFF]

RDM DISCOVERY

SR N ¥ o W ¥

=t e 2 @, canee

Isolate parts of the tree using a Binary Search
Discovery finishes when there are no more devices to MUTE
At this stage, the master has a list of all device UIDs

35
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DISCOVERY OF DEVICE UID

= UMUTE ALL: ??2?? ?

=4 = DISC_UNIQUE_BRANCH 7?7?77 ?
Multiple response
DISC_UNIQUE_BRANCH 07?7 ?

- 1 response, slot 1 = 00001
DISC_MUTE 0000 1
DISC_UNIQUE_BRANCH 1??? ?

Multiple response

Slot DISC_UNIQUE_BRANCH 10?? ?
et 1 response, slot 2 = 10011
DISC_MUTE 10011
DISC_UNIQUE_BRANCH 1??? ?
- 1 response slot 3 = 11000
‘ Muted DISC_R/IUTE 11000
‘ & cted 77?7 ? - No response

All devices have been found!

DISCOVERING CHANGES

After discovery the controller ought to know the UID of every device

It can then retrieve the DMX base address, equipment profile, and ar
other required parameters

What happens when a new RDM device is added to the bus?
....Or a discovered device its removed?
The RDM Master controller could use the discovery algorithm

... This can require many commands and take a long time

Instead, a RDM Master controller could be smarter
Incremental discovery uses the already discovered list of devices
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CHECKING DISCOVERED LIST
UlR DIEVICES

First step: Check the list of responders in the list.
Send a command to each UID
If the device responds, then it is still there.
If it it does not respond, remove the UID from the list

DISCOVERING NEW DEVICES

The second part of incremental discovery is checks for new devices

Send DISC_UNMUTE FFFF: FFFF FFFF

Send DISC_MUTE each previously discovered slot in list

See if any new responders have appeared

i.e. DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- After this, the RDM Master controller knows all devices on the bus

39
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LOSS OF COMMANDS

What happens when a responder misses a command?

Missing a MUTE or UNMUTE breaks the protocol!

- it is helpful to repeat all critical commands

- also helps to add delay between repeated commands.
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DISCOVERY PROBLEM

The initial design had a problem:
The lights “flickered’ in the first design.
... because more than one device could respond
... the collision signal could look like a start code of zero!
... other devices would read this as data
The solution came in two parts:

1) Do not send a Break/MAB for RDM responses, instead
respond using a special pre-amble sequence

2) Encode data so it is highly unlikely that a “combined”
signal is wrongly interpreted as actual data.
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DMX REPEATER (RECAP)

DMX

Output
port

Controller
Input
port

Output
port

A DMX repeater is designed for a simplex link
All DMX frames originates at the control
The repeater/splitter copies the DMX frames to all the output ports

A DMX repeater will never repeat RDM responses from output ports
back to the controller

44




RDM SPLITTERS/REPEATERS

Output i) Responder
e [Pt > control
logic to
enable
Input Command } responders
port et 4 to send to
the command
port
Output Responder
port port

An RDM repeater/splitter needs to be different to support half-duplex.

The repeater/splitter configures the transceivers at the ports so a
responder can send a frame to the command port, when it needs to.

This frame only needs to be sent to the command port (i.e. master).
(A slave never needs to send frames to other slaves).
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RDM REPEATERS DETAIL

Responder

ANy

Command
port

control
logic

Responder
port

Two types of port

Responder Ports receive commands, and transmit responses
towards controller

Command Ports sends commands and can receives responses

RBM REPEATERS DEAS

Responder

Command
port

control
logic

Responder
port

All ports can be enabled to send or receive
Normally, the command port is in receive mode, other ports in send
When a break is received on a responder port.

A frame is received by the repeater on a responder port

The frame is repeated towards the master using the command port
The repeater returns the command port back to receive mode

46
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RDM REPEATER NETWORKS

RDM Repeaters need to support half-duplex
Overall network timing important for half duplex

No more than 4 repeaters in series (timing constraint)

Device

Device Device

Controller

Device

48




RDM QUESTIONS

* Does RDM slow-down the speed of DMX update?

* Why did the first version of RDM make DMX equipment
“flicker”?

* Does RDM replace DMX?

49

SYNCHRONOUS
CONTROL

FURTHER DMX READING

+ “Control Freak - A real world guide to DMX-512 and Remote Device
Management”,Wayne Howell, 2010

» "Recommended Practice for DMX 512: A Guide For users and Installers",Adam
Bennette, (PLASA) *

* ANSI EI.ll, Asynchronous Serial Digital Data Transmission Standard for
Controlling Lighting Equipment and Accessories, USITT DMX512-A, American
National Standards Institute, 1990 (PLASA) *

+ ANSI E1.20, Remote Device Management, over USITT DMX 512 Networks,
2003 (PLASA) *

* Free download at tsp.plasa.org
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CAN

Battle Tank Controls
Architecture o g ——

MOTOROLA

Controller Area Network
G Fairhurst




POINT-TO-POINT WIRING

Traditional car wiring loom can be several
miles of cable!!

A bus significantly reduces cable & cost

CAN BUS

ECU ECU ECU
Device Device Device
#1 #2 #n
"CANH
<
120Q 2>120Q
D
CANL

120 Ohm shielded twisted pair cable
Specified as 108 - 132 Ohms
The conductors in the pair are labelled CANH and CANL
A shield reduces EMI

Bus terminated at each end with 120 Ohm resistor
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=
CANH " - R
Microcontroller \VA!
with CAN CAN v( / |
Controller Transceiver | /

R | |
=4 IXD 4 T AVA

Single-Ended Logic-Level Signais 3 Comgiementary Oifferensal Signals

Max | Mbps data transmission
(CAN-FD is compatible and works at 5 Mbps)

CAN BUS LENGTH

A
1006 Bus lines
5001 assurrlledt to ble
an electrica
2001 medium
Bit Rate 100 (e.g.twisted
[kbps] 50: pair)
20+
101 )
s |
1 } } —>
0 10 40 100 200 1000 10,000

CAN Bus Length [m]

MAximum bus length is a function of bus speed
1 Mbps <= 40m
125 kbps <= 500m
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CAN TRANSCEIVER

CAN transceivers use Open-Collector (O/C) logic to connect to the bus

Logic | (recessive): No signal sent
+ Output at CAN_L floats to 2.5V
+ Output at CAN_H floats to 2.5V

+ i.e.there is a no voltage difference between the conductors

Logic 0 (dominant): Forces bus to a zero level
+ Output at CAN_L driven to |.5V
+ Output at CAN_H driven to 3.5V

* i.e.there is a 2V voltage difference between the conductors

A receiver detects a 0 when CAN_H-CAN_L > 0.9V

57

CAN CABLEVOLIAGE

TISNXSHVD25 [ INDUSTRIAL
CAN BUS TRANSCEIVER

SLOPE l
CONTROL and
MODE LOGIC

A -
v | 3
s | y, Joh
& | 4 "‘f
i =OFF |y
Emd CANH | ‘ el fo
o
3 Vamp) *
2 o { ? a) Recessive State (TXD = HIGH)
3 CANL | Vamr) =
o ——
= - b 4
—
=
i
+ » Time, t
Recessive | Dominant | Recessive Il
Logic H Logic L Logic H ¥y
Qeon |
=
..... —
Dominant State (TXD » LOW)
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DIFFERENTIAL RECEPTION

Noise

CAN_L

Received signal (CAN_H) - (CAN_L)
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CAN SIGNAL

Two signals on cable
: - asy = r_\
///'
ey

Decay

2.5V —

1.5V

0 0.1 0.2 0.3 0.4 0.5 0.6
Value 0 0 | | 0 | | | ..
61

CAN 1D

Every frame has a CAN_ID - this is NOT an address.

CAN_IDs are unique (centrally assigned in a network), lowest has highest priority
Nodes can send any CAN_ID, but usually use one CAN_ID for each event

4 4

I 1-bit ID IDE flag indicates if 18 more address bits directly follow the IDE
If IDE = 0, the CAN-ID is || bits (CAN 2.0A)

If IDE = I, the CAN-ID are 29 bits (CAN 2.0B - with 18 bit extension)

e e e
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@ N'FRAME FORNMZT

Data 0-8 bytes (0-64b), sent msb first

DLC = Data Length Code 0-8 bytes

Start of Frame (Ib) = 0 - dominant bit!

Control fields (3b) {RTR; ID (long of short); Reserved/FDF}
* Data length (4b)

+ Data (0-64b)

» CRC (I5b)

» CRC delimiter (Ib) = |

ACK field (2b)

End of Frame Delimiter (7b) = |
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CAN FRAMES

DS0X 12046, CNG3327237: Sat Mar 02 01:19.04 2024

» 602 Data

8 |03 F5 00 00 00 00 2E B3|[751E
40.50ms [603 Data[8 |00 00 03 E7 10 00 00 00|58A4
41.00ms_|604 Data|8 |00 00 03 E7 10 00 00 QO |69ES
41.50ms [605 Data[8 |FE DE 03 E8 23 28 00 00 |366E
42.00ms_|606 Data|8 |FE E1 03 E8 23 28 00 00 |495F

Data 00 00 00 00 B
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CAN ACK FIELD

Senders monitor the bus while transmitting...
The sender sends the ACK (recessive) at the end of each frame

-When a receiver sees the end of the message, it sets the ACK bit to dominant
The sender now knows that message has actually been sent by the bus

- If the sender does not see this bit set, it knows there was an "ACK ERROR"!

5] le
et s [ Sl 2 el
HE3 B|2[2| EOF 7-BITS |£ ==

CRC15-(15+S) BITS

" DLC
3| CANID 11-BIT 4-BIT| | DATA BYTE 1

ACKD = |

EVERY WORKING BUS >= 2 NODES!
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END OF FRAME

Valid frames finish with a series of seven recessive bits, i.e. "idle"

Followed by a 3-bit inter-frame space

Senders monitor the bus while transmitting...
CRC, DEL,ACK, EOF all need to be seen correctly
Otherwise the frame is in error
An ERROR FRAME is sent to force all nodes to see the fault

This typically causes the frame to be resent

DLC
4-BIT] DATA BYTE 1

ANS
E‘ CANID 11-BIT = 8ls EEl

CRC15-(15+S) BITS

EOF 7-BITS

4 CAN FRAME TYPES

o
=
4
(s}

DLC B
@ CANID 11-BIT E[sls 4.BITH DATABYTE1 | CRC15-(15+S) BITS 818| EoF 7-BITS

w
S

» DATA - Broadcasts data to the bus (most common)
* REMOTE - Request data from a node (see later)
* ERROR FRAME - Reports an error by a node

* OVERLOAD FRAME - Flow control to delay transmission
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R ELECTRICAL SYSTRER!

Car electrical system components:

B <board produce and/or consume

+ Engine Control Units (ECUs)
+ Anti-lock Braking System (ABS)
+ Active Suspension

T produce

* Transmission Control :~

« Lighting .
* AirCon consume

* AirBags

Power Windows; Power seats; Power Locks; etc

Each component can produce and/or consume CAN frames
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USING CAN FRAMES

CAN Bus

F

8
switches

i

HIHTTH

input module output module

The CAN ID identifies the message/event

It is not the address of a sender or the receiver

An input module produces CAN frames
An ID is assigned to each event
An output module consumes one or more CAN frames

For each configured ID sets an appropriate output

RECEIVING FRAMES/EVENTS

Data Frame; Identifier 'oil_tmp";

Any node can receive any data (event)

Nodes simply select which messages are of interest and receive them

70

CAN FRAME PROCESSING

R W ﬁ Frames sent with an ID

Sender Intended Recipient

i —

‘ i ‘ ﬁ Frames propagate to all nodes

Sender Intended Recipient

.‘:' ™ ?‘ ﬁ' Nodes sees all frames

Sender Intended Recipient

1 s ﬁ Nodes filter only wanted set of IDs

Sender  Intended Recipient

71

Some frames are of interest to no nodes at all!

The same frames could be of interest to more than one node
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REMOTE FRAMES

How hot is the oil 2 |_,

Remote Frame; Identifier 'oil_tmp'

<_| 115°C!

Data Frame; Identifier 'oil_tmp";
contains desired information

Remote Frames are sent in two stages:
* Remote Frame sent to ask for a data frame

+ Data Frame is sent to the CAN bus
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CAN APPLICATIONS

History

+ 1983 Original application was for car electrical systems (Robert Bosch)

+ 1987 First CAN controllers by Intel and Philips
+ 1993 1SO 1198

+ 1995 Standards developed from CAN: CANopen; DeviceNet;).1939

Orriginal applications (~85% market)
+ Cars, trucks, agricultural equipment, etc

Other applications (~15% market)

* Trains, Planes (non safety-critical - e.g. aircon)

+ Medical equipment, (XRay, CAT scanners, etc)

+ Building automation ( e.g. lifts), Office automation

*+ Household appliances (including coffee makers), Stage control (Chillinet)

+ Military vehicles, MILCAM (combines CANopen & J.1939)
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Foxt R

Interupt B
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CAN controllers integrated in a range of microcontrollers (ECU)

- usually use an external transceiver
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3 separate CAN busses




INDUSTRIAL AUTOMATION

SAM3X 84MHz ARM
+ ARM CORTEX M3 Processor
« 2 x CAN 2.0B,

+ 10/100 Mbps Ethernet, USB 2.0, I12C, UARTs
+ 103 I/O pins

CAN IN AEROSPACE/SPACE

ATmegaS64M| 8-bit megaAVR® MCU

+ Operating temperature -55° C to +125° C
+ Supports CAN 2.0
- 8-bit UART & SPI

* || Channels ADC

Package

* Plastic aerospace applications
+ Ceramic radiation-tolerant for space applications

+ Same pinout as automotive-qualified AVR
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ARDUINO CAN SHIELD

USB interface CAN interface

(DB-sub9)

Microchip MCP2515 CAN controller
Microchip MCP2551 CAN transceiver
EM406 GPS Interface (asynchronous serial)
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BIT STUFFING

CAN bus uses synchronous transmission

There are no start and stop bauds to frame each byte (e.g., slots in DMX)

There is a transparency problem when sending the same level for many bit periods

- There would be no timing at the receiver to discover sample time for bauds
- CAN uses bit stuffing to prevent this
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BIT STUFFING

Senders and receivers count runs of bits sent at the same level

A sender that sends 5 bits of same polarity, inserts one stuffing bit (of the
opposite polarity) before sending the next bit.

These bits are not part of message.
Does not apply to CRC or ACK fields

A receiver that receives 5 bits of same polarity, deletes the following bit:
The removed stuffing bit must be the opposite polarity (or a STUFF ERROR)

Note this happens automatically and ensures receivers always see transitions
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BRARSTURFING EXAMRBIEES

Examples - can you encode these using bit-stuffing?
* Original data:1010101001
* Original data: 1010000001
* Original data: 101000001 I |

Examples - can you decode these using bit-stuffing?
» Sent on cable as 10101111101
» Senton cableas 10101111111
» Sent on cable as 10101101101

BIT STUFFING ||

Examples - can you encode these using bit-stuffing?
+ Original data:1010101001
* sent on cable as 1010101001, received as 1010101001 (not stuffed)
* Original data: 1010000001

* sent on cable as 10100000 (1) Ol, received as 1010000001
* Original data: 101000001 11

* sent on cable as 10100000 (1) Il 1, received as 101000001 I |

Examples - can you decode these using bit-stuffing?
+ Sent on cable as 10101111101

* This was stuffed as 10101 1111(0) I, received as 1010111111
» Senton cableas 10101111111

* This was stuffed as 101011 111(1) I, this is a stuffing error

\Y
» Sent on cableas 10101101101

O
66}’6
+ This was not stuffed, received as 10101101101 C,Od
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MAXIMUM LENGTH

The size of a CAN frame is:
+ 44 (header size) + 8n (n bytes of payload data)
Bit-stuffing can increase the size of a frame

+ (44+48n) <= size after stuffing <= (44+8n)+(34+8n-1)/4

Bit stuffing in CAN ensures there are always some bit transitions

- Bit stuffing adds extra bits before sending and removes them before processing
- Can add up to one bit in five, maximum 20% additional overhead
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ERROR FRAME

When the error flag is set, an Error Frame is sent
- This is six dominant bits followed by eight recessive bits
- This is of course illegal (due to the stuffing rules)

- All nodes recognise this as a fault condition
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ARBITRATION PERIOD

The “dominant” values replaces the “recessive” value

* A node continues if it does not see a dominant (0) when it sends a recessive (1)

Other nodes become idle:

* If a node sees a dominant (0) when it wanted to send a zero, it backs-off:
+ It then repeats transmission as soon as idle (CSMA/CD)

+ After arbitration one message is always correctly received

The need for bus monitoring limits the maximum propagation time

This limits the maximum allowed bus length

ARBITRATION EXAMPLE |

Consider two nodes with two message IDs:
* Node A sends 15 (00000001 I I I')
+ Node B sends 16 (00000010000)

bus
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N
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ARBITRATION EXAMPLE |

Consider two nodes with two message IDs sent at the same time::
* Node A sends CANI-D 15001111
* Node B sends CAN-ID 16 0010000

Note: Logic 0 is dominant

SFD B backs off

A 0 O o0 O o o o o I I I 1
o o I 1 1 1

B 0O 0 O O O O
bus 0 0 0 O O O
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ARBITRATION EXAMPLE 2

Consider three nodes with three message IDs sent at the same time:
* Node A sends CANI-D 14 0001110
* Node B sends CAN-ID 24 0011000
* Node C sends CAN-ID 7 000001 | |

Note: Logic 0 is dominant

SFD A,B backs off

LOWEST ID WINS ARBITRATION

Value seen
on bus 0 0

Values that each node attempts to transmit:

Node 8

1D=0001000 0 0 0 1 0 0 ( . 8hasthebus
Node 9

1D=0001001 0 0 0 1 0 0 1\
Node 10

1D=0001010 0 0 0 m 0 ,T 9 drops out

Node 12 \
1D=0001100 0 0 0 1 1 10.drops out

Node 17 \
1D=0010001 0 0 1 12 drops out
Time \

_} 17 drops out (stops competing for the bus)

High priority messages are assigned lower IDs

A 0 0 O O O o o0 o0 I ...
o0 o000 o o N
c 0o 0,0 O O O O 0 O I | |
bus 0 0 O O O O O O o | | |
90
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ARBITRATION EXAMPLE 2

Consider two nodes with two message |Ds:
* Node A sends 685 (01010101 101)
* Node B sends 655 (01010001 1'11)

SFD A backs off
sooooan
B| 0| O | 0 | 0O 0 O | | | |
bus 0 O | 0 | 0O 0 O | | | |
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WAVEFORM

* Sketch the waveform for first 12 bit periods for the sequence that wins the

arbitration:
0011111111
SFD i
Two signals on cablg gtu g
+ CAN_L
« CAN_H
- 5V [ | r_ \
B[ - \
[
Decay — ] e
2.5V
45V ol 02 03 04 05 06
Value 0 0 | | 0 |
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Cyclic Redundancy Check (CRC)

CRC is a form of digital signature (15 bit hash)
Calculated at the sender & sent
Re-calculated at the receiver
Two values compared at receiver
Able to verify the integrity of the frame

CRC detects:

Frames that have been corrupted

Bit timing errors
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Galois Field 2 Division

not used

quotient
divisor ) dividend

remainder

generator content of
polynomial frame

ixed size (<divisor)
sed for checksum
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Why Modulo 2 Division?

All CRC calculations ignore the carry
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Example simplified to generate a short (4 bit) CRC

10
11001 JTTTO0T0OT 0000
©11001| -
001011
£00000
01011

1 Bring next digit of dividend down

2 Copy msb of value to quotient

3 Insert O (if quotient 0) or divisor (if quotient 1)
4 Calculate XOR sum

5 Discard msb of value (always 0)

99

Example simplified to generate a short (4 bit) CRC

Modulo 2 division
replaces addition

in BCC calculation First digit 0's are appened

must be '1' to the dividend
/ / (flush bits)

1
OTo1r 0000
1

(Generator Polynomial)

/ 01101
Divisor \
This digit must always be 0
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The CRC Value
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CRC Value when there was an Error

\ Received CRC

replace by 0's

Bit error in frame

Received CRC
*
Calculated CRC

CRC value = Remainder

Hardware Example: CRC-15

X175 + x14+ x10 + x8 + X7 +x4 +x3 + X0
A CRC-15 requires a 15-stage shift register and X-OR gates
Clock each input bit

input

Then “flush” the shift register by input of 15 0’s.

CRC-15 properties

X0 Isa parity bit that detects all odd numbers of errors

Consider this CRC-15:
X5+ x14+ x10+ x8 + x7 +x4 +x3 + x0
The final code has a Hamming Distance of six

This means that five randomly distributed bit failures are detectable.

The probability of undetected multiple bit-errors is very low
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CRC-15 and CAN

Many systems detect errors using a CRC to and discard corrupted frames.

X715 + x14 + x10 + x8 + X7 +x4 +x3 + X0

The CAN bus uses the CRC to verify each message
Each message where the received and calculated CRCs do not match

causes the CAN receiver to send an Error Frame

HOWEVER although the code has a Hamming Distance of six it is less
strong than it seems when used with CAN!

Corruption of a single stuffing bit leads to shifting of the data, effectively
inducing a 0.5 error rate, which reduces the power of CRC-15!!

Still, good enough for most applications.

104




Comparison of Integrity Checking Methods

Example

Hardware

Longitudinal

Parity Checksum

NMEA GPS | DMX SIP Frames

| XOR gate per

CRC

CAN, USB

XOR gates and

CAN-FLEXIBLE DATA (FD)

CAN-FD adds new formats
* Extends frame size up to 64B of data

* Increases transmission speed of data

Imnplementation bit Adder per byte shift register
Software XOR instruction | Add instruction maths, lookup
Implementation + register + register table + register
De‘;ectlon i Poor Better Good
multiple errors
105
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CAN-FD HIGH RATE

- [ISO 11898-1 and ISO 16845-1]

Classical CAN frame with 8 B of data

CAN-FD with 8 B of data

QCIassicaI CAN frame CAN-FD on same scale with 64B of data

jCAN-FD with 64B of data at x8 rate

CAN-FD LARGE FRAMES

CAN-FD with 64B of data at x8 rate

Higher baud rate results in lower Eb/No
- and hence more stringent cabling/transceiver design
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CAN SUMMARY

High speed control bus
+ Supports multiple senders with arbitration

+ Supports real-time applications

Low cost chips and cable
+ High Reliability
* Plug and Play operation

Extensible
+ CANopen extends CAN for other applications
« CAN-FD increases data rate to ~ 5-8 Mbps

COMPARE DMX & CAN

109

COMPARE DMX & CAN

CAN DMX RDM
PHY RS-485 Sync RS-485 Async RS-485 Async
Cable 120R STP 120R STP I120R STP
Direction HDX Simplex HDX
Levels |25'5;/5fc;;r| . A inverse of B A inverse of B
Inter-Byte Gap No Idle Idle
Senders Any | Any with Master
Frame SFD 0 92 uS Break 92 S Break
Frame Data Size 0-8B 1-512B 1-512B
Frame EOF T Idle Idle
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CAN DMX RDM
PHY RS-485 Async RS-485 Async
Cable I120R STP 120R STP
Direction Simplex HDX
Levels A inverse of B A inverse of B
Inter-Byte Gap Idle Idle
Senders | Any with Master
Frame SFD 92 uS Break 92 uS Break
Frame Data Size 1-512B 1-512B
Frame EOF Idle Idle
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Sync pattern
Source data 00 0 0 0 0 0

NRZ encoded data
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