
COMMUNICATIONS ENGINEERING I
- COMMUNICATIONS FOR CONTROL

GORRY FAIRHURST
RAFFAELLO SECCHI

SCHOOL OF ENGINEERING
UNIVERSITY OF ABERDEEN

HTTP://WWW.ERG.ABDN.AC.UK/~GORRY/EG3576/

CAN-RDM V09

EG3576

1

DUPLEX
SERIAL

COMMUNICATIONS

2

REMOTE DEVICE
MANAGEMENT (RDM)

RDM Standardised as E1.20 (2010)

- RDM physical layer

- Packet format for RDM and the UID

- Communicating with devices

- Discovering the UIDs of devices

- RDM repeaters

3

WHY RDM?

Before RDM, any change to
a device meant actually
setting switches/controls
on the device itself.

Using RDM, devices can be
monitored and configuration
can be changed remotely
using the bus.

4

WHAT IS RDM?
Remote Device Management

Allows bi-directional communication to/from a device using
the DMX cable.

This can be used to:

- Build a list of all devices on a DMX bus

- Set a device's DMX base address (which slots to read)

- Set a device's DMX channel profile (what slots do)

- Monitor the status or faults reported by a device

- Download an upgrade to the device firmware

5

THE RDM PHYSICAL LAYER

6

RDM HISTORY
Work started 2001, main spec 2010, updated 2023

Should the standard use two wires or four wires?

Soon after 2001 it was decided to use just two wires

Two-wire DMX cable was then common

It uses a half-duplex bus (one transmitter active at any time)

Each RDM device also has a Unique ID (not DMX address)

http://tsp.plasa.org/tsp/documents/docs/E1-20RDM_2006.pdf

7

RDM BUS TERMINATION

A classical DMX sender is conected at one end of the DMX cable

In RDM, any of the 32 devices on the bus might send

The signal therefore travels in both directions along the cable

It is important to terminate BOTH ends of the cable with 120 Ohms

8

http://tsp.plasa.org/tsp/documents/docs/E1-20RDM_2006.pdf

RDM PHYSICAL LAYER

RDM uses a Bi-directional EIA-485 bus

An RDM device uses tri-state drivers

- This uses Half Duplex

Each device controls the direction of transmission:

(a) The master normally sends; Others normally listen.

(b) These roles can be reversed to allow equipment to send.

(c) There can be moments where there is no sender.

(d) There may be transients when more than one device tries

 to send (in half-duplex these result in signal corruption).

logic in

line

In

Out logic out
(RDM when

enabled)

direction control

9

HALF DUPLEX OPERATION
(1) One device is the master - usually the DMX sender.

The master controls who can transmit to the bus.

The master initiates a communications request to a "slave” by
addressing the unit and then setting the transceiver to receive.

(2) The master listens for a response (receive mode).

The slave receiver recognises a control slot.

If the slot addresses the slave, it enables its own transmitter.

(3) Once data sent, the slave reverts back to receive mode.

Master resumes control after reception from slave (or a timeout).

There are two roles assumed to enable an equipment to send:

10

RDM - HALF DUPLEX

Normal DMX Data

RDM controller
message

RDM response

Idle

Direction
of transmission

Forward ForwardRev

Time

11

RDM - IDLE TIMES

Idle

Direction
of transmission

Forward ForwardRev

Time

Timing between master and slave can be slightly delayed
Therefore small idle periods where the bus “floats”.

Time before start of next regular
control frame sent by the master

12

THE CONTROLLER

When the line is idle, it “floats”

This makes a receiver vulnerable to noise

Instead, a bias network is added to ensure the line level > 245 mV

Line A is connected via bias resistance to GND

Line B isconnected via bias resistance to +5V

Of course, only do this once for each bus!

13

CALCULATING BIAS
Each EIA-485 node has an input impedance of 12K.

32 nodes in parallel present load of 376 ohms.

Two 120 Ohm terminators - a combined 60 Ohm load.

Total load is therefore 51.8 ohms.

To maintain at least 245 mV between B & A line, needs a bias current of ~
4.7 mA to flow through this load.

A 5V supply needs a series resistance of 1063 Ohms, subtract 51.8
Ohms of bus loading, this leaves 1011 Ohms.

Placing half as a pull-up to 5V and half as a pull-down to ground gives a
bias of 505 Ohms, 510 Ohms to nearest preferred value.

14

RDM BIAS

Idle Bus
(no sender)

Driven Bus
(sender active)

15

THE PACKET FORMAT FOR RDM
AND THE UID

An RDM packet is sent in a DMX frame with:

Start Code (value 0xCC, 204 decimal)

RDM Header (24 slots);

Message Length; Source; Dest.; Command; Param.; etc

RDM Data Area (variable)

Checksum (2 slots) - 16-bit sum of all slot values

16

IDENTIFYING RDM DEVICES

All RDM frames use a Start code of 0xCC

 “simple” devices already ignore non-zero start codes!

Each RDM device has a Unique ID (UID)

The UID is assigned by a manufacturer

This is not a DMX base address (position in the frame)

The UID is a globally unique identifier

17

RDM PARAMETERS
Each device has:

A UID (permanently set by the manufacturer)

A flag to say whether the device is addressed

A flag to say whether the device is muted (see later)

A set of parameters stored in an EEPROM data (non-volatile):

The device DMX base address

The current profile (mapping slots to parameters)

Other configuration parameters (defined by the profile)

Other status parameters (e.g., temperature, current, time used)

18

RDM UNIQUE ID
All RDM equipment is uniquely identified:

Manufacturers assign a unique 6 byte UID

FFFF: FFFF FFFF (Broadcast)

A 2B Manufacturer ID is assigned to each manufacturer

UID = 2B Manufacturer ID + 4B Serial Number (Flat address)

2B Manufacturer ID: FFFF FFFF (All manufacturer systems)

DMX base address can be changed depending on the use

 The ID is not the DMX base address

 An RDM Device is addressed irrespective of DMX address

19

RDM CHECKSUM
• Sender:

• Calculates the unsigned, modulo 0x10000, 16-bit additive
checksum of the entire packet slot data (from START Code
to end of frame)

• Places result in the Checksum field of the frame

• Receiver:

• Calculates the unsigned, modulo 0x10000, 16-bit additive
checksum of the entire packet slot data (from START Code to
end of frame)

• Compares result with the Checksum field of the frame

• Only if two match frame is OK, otherwise frame is discarded

20

RDM PACKET FORMAT

Decode

A

B

Start
Code RDM Header (24 slots), RDM Data, and Checksum

21

COMMUNICATING WITH RDM
DEVICES

22

RDM COMMANDS
RDM devices do not respond to commands unless addressed

They do read DMX data sent with a start code of 0x00

To communicate with a specific device using RDM:

1. Address the device using the UID (“Listen" sent to the UID)

2. Write (set) or read (get) information stored in the set of parameters

3. Then the device is released (“Quiet”)

23

MASTER MUST KNOW UIDS
The master needs to know the UID of each receiver

Important to address each device

Important to know what equipment is on the bus.

i.e. parameters need to be interpreted in context.

Key question is how to find out what is connected!

281,474,976,710,656 UID va
lues!

24

RDM GET START ADDRESS

GET_Command
(DMX-start-address)

GET_Command_Response
(DMX-start-address,
<base addreses>)

Listen (UID)

Quiet

25

RDM SET START ADDRESS

SET_Command
(DMX-start-address,
<base address>)

SET_Command_Response
(DMX-start-address,
<base address>)

Listen (UID)

Quiet

26

CONFIG DMX ADDRESS
A
B

Slot
UID

Response from RDM device …
address now set to 16

SET DMX_START_ADDRESS 16

2
01 ...

1
0 00...

3
1 ...

Reliability requires checking address was set correctly

27

RDM GET SENSOR VALUE

LISTEN <uid>

GET_Command
(sensor)

QUIET

GET_Command_Response
(sensor, sensor-values)

28

TIMING OF RESPONSES

A “simple DMX” device ignores start code > zero
RDM takes time, this limits the maximum frame rate of sender.

Commands typically require only one receiver to respond
RDM not recommended during time critical communications

Normal DMX Data

RDM controller

RDM response

Idle
Direction
of transmission

Forward ForwardRev

Time

29

RDM DISCOVERY

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE

BRANCES OF THE TREE TO FIND THE
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off,

discovery is complete.

30

RDM MASTER

The RDM master (controller)

Needs to find a list of the devices that respond to RDM

Discovery is used to ask devices to respond

Devices respond to discovery messages by sending their UID

31

DISCOVERY - ONE DEVICE

DISCOVER

Discover_Response
(UID)

When more than one device responds, the Discover_response
will be corrupted by multiple devices sending at the same time!

Once the UID is discovered the controller can address the device.

32

RDM DEVICE MUTE FLAG
Each RDM device has a MUTE Flag

The RDM bus controller can set or clear this MUTE Flag

DISC_UNMUTE (UID)

DISC_UNIQUE_BRANCH (UID-range)

Once set, the device does not respond to Discovery messages

This is used in the discovery algorithm in tow ways:

To resolve collisions (avoiding two replies at the same time)

To avoid discovered devices responding, once found.

33

RDM - UID DISCOVERY
Master discovers UID of each device on network.

Starts with DISC_UNMUTE FFFF: FFFF FFFF

- Tells all muted devices to respond

- Master clears its list of responders

RDM discovers devices polling

DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- Tells all devices to respond:

No response? ... then there are no responders.

One response ... we’ve found the only responder (add to list).

Collision ... there is more than one responder!

Range to respond

34

RDM - UID DISCOVERY
RDM then starts a binary search

- divides the search space into two halves:
DISC_UNIQUE_BRANCH [0000: 0000 0000 - 7FFF: FFFF FFFF]

- Do these devices have the first bit unset?
No response? ... there are no responders in bottom half.
One response ... we’ve found a responder, add to list.

Tell responder to mute, and expand the search range.
Collision ... there is more than one responder:

divide the range by two and loop...
Repeat for other half of space:

DISC_UNIQUE_BRANCH [8000: 0000 0000 - FFFF: FFFF FFFF]
•

35

RDM DISCOVERY

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE

BRANCES OF THE TREE TO FIND THE
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off,

discovery is complete.

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE

BRANCES OF THE TREE TO FIND THE
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off,

discovery is complete.

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE

BRANCES OF THE TREE TO FIND THE
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off,

discovery is complete.

Isolate parts of the tree using a Binary Search
Discovery finishes when there are no more devices to MUTE
At this stage, the master has a list of all device UIDs

36

DISCOVERY OF DEVICE UID
DISC_UNIQUE_BRANCH ???? ? A

B

Slot
UID

???? ? - No response
All devices have been found!

- 1 response slot 3 = 11000

 DISC_UNIQUE_BRANCH 1??? ?
 Multiple response

2
10 ...

1
0 00...

3
1 ...

DISC_MUTE 0000 1

DISC_MUTE 11000

DISC_MUTE 10011

- 1 response, slot 1 = 00001

UMUTE ALL: ???? ?

Muted

Selected

Multiple response
DISC_UNIQUE_BRANCH 0??? ?

DISC_UNIQUE_BRANCH 10?? ?
1 response, slot 2 = 10011

DISC_UNIQUE_BRANCH 1??? ?

37

DISCOVERING CHANGES
After discovery the controller ought to know the UID of every device
It can then retrieve the DMX base address, equipment profile, and any
other required parameters

What happens when a new RDM device is added to the bus?
....Or a discovered device its removed?
The RDM Master controller could use the discovery algorithm
... This can require many commands and take a long time

Instead, a RDM Master controller could be smarter
Incremental discovery uses the already discovered list of devices

38

CHECKING DISCOVERED LIST
OF DEVICES

First step: Check the list of responders in the list.
Send a command to each UID

If the device responds, then it is still there.
If it it does not respond, remove the UID from the list

39

DISCOVERING NEW DEVICES
The second part of incremental discovery is checks for new devices

Send DISC_UNMUTE FFFF: FFFF FFFF
Send DISC_MUTE each previously discovered slot in list
See if any new responders have appeared
i.e. DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- After this, the RDM Master controller knows all devices on the bus

40

LOSS OF COMMANDS

What happens when a responder misses a command?

Missing a MUTE or UNMUTE breaks the protocol!

- it is helpful to repeat all critical commands

- also helps to add delay between repeated commands.

41

DISCOVERY PROBLEM
The initial design had a problem:

The lights “flickered” in the first design.

... because more than one device could respond

... the collision signal could look like a start code of zero!

... other devices would read this as data

The solution came in two parts:

1) Do not send a Break/MAB for RDM responses, instead
respond using a special pre-amble sequence

2) Encode data so it is highly unlikely that a “combined”
signal is wrongly interpreted as actual data.

42

RDM SPLITTERS

43

DMX REPEATER (RECAP)

A DMX repeater is designed for a simplex link
All DMX frames originates at the control
The repeater/splitter copies the DMX frames to all the output ports

A DMX repeater will never repeat RDM responses from output ports
back to the controller

Input
port

Output
port

Output
port

DMX

Controller

44

RDM SPLITTERS/REPEATERS

An RDM repeater/splitter needs to be different to support half-duplex.
The repeater/splitter configures the transceivers at the ports so a
responder can send a frame to the command port, when it needs to.
This frame only needs to be sent to the command port (i.e. master).
(A slave never needs to send frames to other slaves).

Command
port

Responder
port

Responder
port

Input
port

Output
port

Output
port

DMX RDM

control
logic to
enable

responders
to send to

the command
port

45

RDM REPEATERS DETAIL

Two types of port

Responder Ports receive commands, and transmit responses
towards controller

Command Ports sends commands and can receives responses

Command
port

Responder
port

control
logic

21. Q: How many luminaries can I link together?

A: You can link a maximum of 31 luminaires together. If your system has more than 31

luminaires integrated you need to add a Splitter / booster (repeater) to your system.

22. Q: What is a splitter and a booster?

A: A splitter (repeater) is a device that splits up a DMX / RDM signal into multiple

amplified signals. A splitter / Booster comes in many different versions. Below is a
typical version with 1 DMX input, 1 though put and 8 outputs.

Responder
port

46

RDM REPEATERS DETAIL

All ports can be enabled to send or receive
Normally, the command port is in receive mode, other ports in send
When a break is received on a responder port.

A frame is received by the repeater on a responder port
The frame is repeated towards the master using the command port

The repeater returns the command port back to receive mode

Command
port

Responder
port

control
logic

21. Q: How many luminaries can I link together?

A: You can link a maximum of 31 luminaires together. If your system has more than 31

luminaires integrated you need to add a Splitter / booster (repeater) to your system.

22. Q: What is a splitter and a booster?

A: A splitter (repeater) is a device that splits up a DMX / RDM signal into multiple

amplified signals. A splitter / Booster comes in many different versions. Below is a
typical version with 1 DMX input, 1 though put and 8 outputs.

Responder
port

47

RDM REPEATER NETWORKS

2 3 4

4

1

RDM Repeaters need to support half-duplex

Overall network timing important for half duplex

No more than 4 repeaters in series (timing constraint)

Controller

Device

Device

Device

Device

Device

48

RDM QUESTIONS
• Does RDM slow-down the speed of DMX update?

• Why did the first version of RDM make DMX equipment
“flicker”?

• Does RDM replace DMX?

•

49

FURTHER DMX READING

• “Control Freak - A real world guide to DMX-512 and Remote Device
Management”, Wayne Howell, 2010

• "Recommended Practice for DMX 512: A Guide For users and Installers", Adam
Bennette, (PLASA) *

• ANSI E1.11, Asynchronous Serial Digital Data Transmission Standard for
Controlling Lighting Equipment and Accessories, USITT DMX512-A, American
National Standards Institute, 1990 (PLASA) *

• ANSI E1.20, Remote Device Management, over USITT DMX 512 Networks,
2003 (PLASA) *

* Free download at tsp.plasa.org

50

SYNCHRONOUS
CONTROL

51

CAN

Controller Area Network
G Fairhurst

52

POINT-TO-POINT WIRING

Page 2

CANPRES Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 2

How it all began...

Engine
Control

Anti-
Lock

Brakes

Trans-
mission
Control

Active
Suspen-

sion

Dash-
board

Lighting

Air
Con-
dition Power

Locks

Power
Seats

Power
Win-
dows

Airbag

•The development of CAN began when more and more electronic
devices were implemented into modern motor vehicles. Examples of
such devices include engine management systems, active suspension,
ABS, gear control, lighting control, air conditioning, airbags and central
locking. All this means more safety and more comfort for the driver and
of course a reduction of fuel consumption and exhaust emissions.

Traditional car wiring loom can be several
miles of cable!!

Page 4

CANPRES Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 4

How it all began (cont.)

Engine
Control

Anti-
Lock

Brakes

Trans-
mission
Control

Active
Suspen-

sion

Lighting

Air
Con-
dition Power

Locks

Power
Seats

Power
Win-
dows

Airbag

CAN
CAN

CANCAN

CANCAN

CAN

CAN

CAN

CAN
Dash-
board

C
AN

C
AN

High Speed Low Speed

•The solution to this problem was the connection of the control systems
via a serial bus system. This bus had to fulfill some special
requirements due to its usage in a vehicle.
•With the use of CAN, point-to-point wiring is replaced by one serial bus
connecting all control systems. This is accomplished by adding some
CAN-specific hardware to each control unit that provides the "rules" or
the protocol for transmitting and receiving information via the bus.

A bus significantly reduces cable & cost

53

CAN BUS

1 Intersil

Using CAN Bus Serial Communications

in Space Flight Applications

Introduction
The controller area network (CAN) protocol is a proven, highly reliable communication system for harsh
environments and has been used in automotive and industrial applications for over 30 years. The CAN two-
wire bus multi-master/multi-drop topology makes it easy to add additional functionality to a system while
significantly reducing the number of wires associated with wire intensive point-to-point topologies. The space
community is well aware of the CAN protocol’s many benefits and advantages, and the need for it to replace
traditional spacecraft bus architectures.

This article examines the use of CAN bus in space flight applications. We will discuss the basics of the CAN
serial communications protocol, advantages of using CAN for satellite communications and the special
requirements needed by a radiation tolerant CAN transceiver.

The European Space Agency (ESA) is leading the development effort to get the hardware, firmware and
software in place to implement CAN for on-board spacecraft communications and control systems. The
ECSS-E-ST-50-15C (May 1, 2015) document was created by ESA to standardize the CAN communication
protocol. It extends the definition of the ISO 11898-1/-2:2003 CAN protocol and specifies the parameters for
serial communication and hardware connection to meet spacecraft requirements.

CAN Protocol Basics
Figure 1 shows a block diagram of a typical CAN bus network. It consists of two differential signal lines
designated as CANH and CANL. Electronic control unit (ECU) devices connect to the differential data lines
and communicate with each other over the differential bus. 120Ω termination resistors are used at the ends
of the bus to suppress any electrical signal reflections.

Figure 1. Block Diagram of a CAN Bus Network

A typical ECU consists of a CAN transceiver, CAN controller/embedded microprocessor (µP), clock source,
analog-to-digital converter (ADC) and/or digital-to-analog converter (DAC), transducer, signal conditioning
circuitry, sensor and actuator (see Figure 2).

120 Ohm shielded twisted pair cable
 Specified as 108 - 132 Ohms

The conductors in the pair are labelled CANH and CANL
A shield reduces EMI

Bus terminated at each end with 120 Ohm resistor

54

CAN TRANSMISSION

Max 1 Mbps data transmission
(CAN-FD is compatible and works at 5 Mbps)

55

CAN BUS LENGTH

22

Arbitration Limits Network Size
� Need 2*tpd per bit maximum speed

[Siemens]

MAximum bus length is a function of bus speed
1 Mbps <= 40m

125 kbps <= 500m

56

CAN TRANSCEIVER

Logic 1 (recessive): No signal sent

• Output at CAN_L floats to 2.5V

• Output at CAN_H floats to 2.5V

• i.e. there is a no voltage difference between the conductors

Logic 0 (dominant): Forces bus to a zero level

• Output at CAN_L driven to 1.5V

• Output at CAN_H driven to 3.5V

• i.e. there is a 2V voltage difference between the conductors

A receiver detects a 0 when CAN_H-CAN_L > 0.9V

CAN transceivers use Open-Collector (O/C) logic to connect to the bus

57

CAN CABLE VOLTAGE

58

TI SNX5HVD251INDUSTRIAL
CAN BUS TRANSCEIVER

1

2

3

4

8

7

6

5

D

GND

VCC

R

RS

CANH

CANL

VREF

SLOPE

CONTROL and

MODE LOGIC

Overtemperature

Sensor

VCC (3)

Driver

Vcc (3)

VCC (3)

VREF (5)VCC/2

Product

Folder

Sample &
Buy

Technical

Documents

Tools &

Software

Support &
Community

SN55HVD251, SN65HVD251
SLLS545G –NOVEMBER 2002–REVISED OCTOBER 2015

SNx5HVD251 Industrial CAN Bus Transceiver
1 Features 3 Description

The HVD251 is intended for use in applications
1• Drop-In Improved Replacement for the

employing the Controller Area Network (CAN) serialPCA82C250 and PCA82C251
communication physical layer in accordance with the

• Bus-Fault Protection of ±36 V ISO 11898 Standard. The HVD251 provides
• Meets or Exceeds ISO 11898 differential transmit capability to the bus and

differential receive capability to a CAN controller at• Signaling Rates(1) up to 1 Mbps
speeds up to 1 megabits per second (Mbps).• High Input Impedance Allows up to 120 Nodes on
Designed for operation in harsh environments, thea Bus
device features cross-wire, overvoltage and loss of• Bus Pin ESD Protection Exceeds 14 kV HBM
ground protection to ±36 V. Also featured are

• Unpowered Node Does Not Disturb the Bus overtemperature protection as well as –7-V to 12-V
• Low-Current Standby Mode: 200-µA Typical common-mode range, and tolerance to transients of

±200 V. The transceiver interfaces the single-ended• Thermal Shutdown Protection
CAN controller with the differential CAN bus found in• Glitch-Free Power-Up and Power-Down CAN Bus industrial, building automation, and automotive

Protection for Hot-Plugging applications.
• DeviceNet Vendor ID #806

Rs, pin 8, selects one of three different modes of
(1) The signaling rate of a line is the number of voltage operation: high-speed, slope control, or low-power

transitions that are made per second expressed in bps (bits mode. The high-speed mode of operation is selectedper second).
by connecting pin 8 to ground, allowing the
transmitter output transistors to switch as fast as2 Applications possible with no limitation on the rise and fall slope.
The rise and fall slope can be adjusted by connecting• CAN Data Buses
a resistor to ground at pin 8; the slope is proportional• Industrial Automation
to the pin's output current. Slope control with an

• SAE J1939 Standard Data Bus Interface external resistor value of 10 kΩ gives about 15-V / µs
• NMEA 2000 Standard Data Bus Interface slew rate; 100 kΩ gives about 2-V/µs slew rate.

If a high logic level is applied to the Rs pin 8, theBlock Diagram
device enters a low-current standby mode where the
driver is switched off and the receiver remains active.
The local protocol controller returns the device to the
normal mode when it transmits to the bus.

Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)

SN55HVD251 WSON (8) 4.00 mm × 4.00 mm
SOIC (8) 4.90 mm × 3.91 mm

SN65HVD251
PDIP (8) 9.81 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

59

DIFFERENTIAL RECEPTION

CAN_H

Noise

Received signal (CAN_H) - (CAN_L)

0 0 1 0 1 1 0

CAN_L

2V
0.9 V

60

3.5V

2.5V

1.5V

Two signals on cable

• CAN_L
• CAN_H

Decay

Value 0 0 1 1 0 1 1 1 ...

0 0.1 0.2 0.3 0.4 0.5 0.6

CAN SIGNAL

61

CAN FRAME

There is no bus master

All frames have a format defined by the header

Each frame may carry some data

Each frame ends with a common trailer

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Header Trailer

62

CAN ID
Every frame has a CAN_ID - this is NOT an address.

CAN_IDs are unique (centrally assigned in a network), lowest has highest priority

Nodes can send any CAN_ID, but usually use one CAN_ID for each event

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

11-bit ID IDE flag indicates if 18 more address bits directly follow the IDE

- -
CANID 11b

-
0 CANID +18b

- -
CANID 11b

-
1

If IDE = 0, the CAN-ID is 11 bits (CAN 2.0A)

If IDE = 1, the CAN-ID are 29 bits (CAN 2.0B - with 18 bit extension)

63

CAN FRAME FORMAT

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

• Start of Frame (1b) = 0 - dominant bit!
• Control fields (3b) {RTR; ID (long of short); Reserved/FDF}

• Data length (4b)
• Data (0-64b)
• CRC (15b)
• CRC delimiter (1b) = 1

• ACK field (2b)
• End of Frame Delimiter (7b) = 1

Data 0-8 bytes (0-64b), sent msb first
DLC = Data Length Code 0-8 bytes

64

CAN FRAMES

65

CAN ACK FIELD
Senders monitor the bus while transmitting...

The sender sends the ACK (recessive) at the end of each frame

- When a receiver sees the end of the message, it sets the ACK bit to dominant

The sender now knows that message has actually been sent by the bus

- If the sender does not see this bit set, it knows there was an "ACK ERROR"!

EVERY WORKING BUS >= 2 NODES!

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

ACKD = 1

66

END OF FRAME
Valid frames finish with a series of seven recessive bits, i.e. "idle"

Followed by a 3-bit inter-frame space

Senders monitor the bus while transmitting...

CRC, DEL, ACK, EOF all need to be seen correctly

Otherwise the frame is in error

An ERROR FRAME is sent to force all nodes to see the fault

This typically causes the frame to be resent

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

67

4 CAN FRAME TYPES

• DATA - Broadcasts data to the bus (most common)

• REMOTE - Request data from a node (see later)

• ERROR FRAME - Reports an error by a node

• OVERLOAD FRAME - Flow control to delay transmission

•

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

68

CAR ELECTRICAL SYSTEM
Car electrical system components:

• Dashboard
• Engine Control Units (ECUs)
• Anti-lock Braking System (ABS)
• Active Suspension
• Transmission Control
• Lighting
• AirCon
• AirBags
• Power Windows; Power seats; Power Locks; etc

Each component can produce and/or consume CAN frames

produce and/or consume

produce

consume

69

USING CAN FRAMES
CAN Bus

The CAN ID identifies the message/event

It is not the address of a sender or the receiver

An input module produces CAN frames

An ID is assigned to each event

An output module consumes one or more CAN frames

For each configured ID sets an appropriate output

70

RECEIVING FRAMES/EVENTS

Any node can receive any data (event)

Nodes simply select which messages are of interest and receive them

Page 15

CANPRES Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 15

Frame Formats - Remote Frame (cont.)

Data Frame; Identifier 'oil_tmp';
contains desired information ~~~~

~~~~~

Remote Frame; Identifier 'oil_tmp'Node A

Node B

(oil temp.-
sensor)

How hot is the oil ?

115°C

115 °C !

q Remote Frame scenario

•If a node wishes to request the data from the source, it sends a
Remote Frame with an identifier that matches the identifier of the
required Data Frame. The appropriate data source node will then send
a Data Frame as a response to this remote request.71

CAN FRAME PROCESSING

Sender Intended Recipient

Sender Intended Recipient

Sender Intended Recipient

Sender Intended Recipient

Frames sent with an ID

Frames propagate to all nodes

Nodes sees all frames

Nodes filter only wanted set of  IDs

Some frames are of interest to no nodes at all!

The same frames could be of interest to more than one node

72



REMOTE FRAMES

Remote Frames are sent in two stages:

• Remote Frame sent to ask for a data frame
• Data Frame is sent to the CAN bus

Page 15

CANPRES  Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 15

Frame Formats - Remote Frame (cont.)

Data Frame; Identifier 'oil_tmp';
contains desired information ~~~~

~~~~~

Remote Frame; Identifier 'oil_tmp'Node A

Node B

(oil temp.-
sensor)

How hot is the oil ?

115°C

115 °C !

q Remote Frame scenario

•If a node wishes to request the data from the source, it sends a
Remote Frame with an identifier that matches the identifier of the
required Data Frame. The appropriate data source node will then send
a Data Frame as a response to this remote request.73

21

Prelube Relay
3E-5239ADEM-II-6X

Master
115-3055

Coolant Flow
Switch

138-3672

Ground Level
Shutdown Switch

4D-1836

User Shutdown
Switch

Throttle Bypass
Switch

126-0236

Manual Ether Aid
Switch

3E-7176

Throttle Sensor
3E-7700

Speed/Timing
Sensor

129-6628

CAN Data Link (future)

ATA Data Link

CAT Data Link

LH Turbo Exh.
Temp. Sensor

109-4367

Atmospheric
Pressure Sensor

143-9696

Speed/Timing
Sensor

129-6628

Fuel Pressure
Sensor

XX-XXXX

Low Oil Level
Sensor

123-2993

Very Low Oil
Level Sensor

123-2993

Oil Press. Sensor
(Unfiltered)
143-9695

RH Turbo Exh.
Temp. Sensor

109-4367

RH Turbo Inlet
Pressure Sensor

143-9696

Oil Press. Sensor
(Filtered)
143-9695

Coolant Temp.
Sensor

102-2240

After Cooler
Temp. Sensor

102-2240

Crankcase
Pressure Sensor

143-9696

Oil Renewal
Solenoid
142-7363

Wastegate
Solenoid
109-4591

Injector Solenoids
137-9881
(QTY. 12)

ADEM Slave #1
132-8900

ADEM Slave #2
132-8900

adem.vsd
6-18-98
dab/jwf

CAT Data Link

Turbo Outlet
Pressure Sensor

143-9694

Start Aid Pull-in
Relay

3E-5239

Start Aid Hold
Relay

3E-5239

CAN Data Link
(future)

ATA Data Link
Timing

Calibration

CAT Data Link

LH Turbo Exh.
Temp. Sensor

109-4367

Atmospheric
Pressure Sensor

143-9696

Speed/Timing
Sensor

129-6628

Fuel Pressure
Sensor

XX-XXXX

Low Oil Level
Sensor

123-2993

Very Low Oil
Level Sensor

123-2993

Oil Press. Sensor
(Unfiltered)
143-9695

RH Turbo Exh.
Temp. Sensor

109-4367

RH Turbo Inlet
Pressure Sensor

143-9696

Oil Press. Sensor
(Filtered)
143-9695

Coolant Temp.
Sensor

102-2240

After Cooler
Temp. Sensor

102-2240

Crankcase
Pressure Sensor

143-9696

Turbo Outlet
Pressure Sensor

143-9694

Start Aid Pull-in
Relay

3E-5239

Start Aid Hold
Relay

3E-5239

CAN Data Link
(future)

ATA Data Link
Timing

Calibration

ADEM II Engine Control

[Caterpillar]

Caterpillar
Adem II engine control

3 separate CAN busses

74

CAN APPLICATIONS
History
• 1983 Original application was for car electrical systems (Robert Bosch)
• 1987 First CAN controllers by Intel and Philips
• 1993 ISO 1198
• 1995 Standards developed from CAN: CANopen; DeviceNet; J.1939

Original applications (~85% market)
• Cars, trucks, agricultural equipment, etc

Other applications (~15% market)
• Trains, Planes (non safety-critical - e.g. aircon)
• Medical equipment, (XRay, CAT scanners, etc)
• Building automation (e.g. lifts), Office automation
• Household appliances (including coffee makers), Stage control (Chillinet)
• Military vehicles, MILCAM (combines CANopen & J.1939)

75

ELECTRONIC CONTROL UNIT

CAN controllers integrated in a range of microcontrollers (ECU)

- usually use an external transceiver
6

CANPRES Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 69

Connecting the C167CR to CAN

CAN-Bus
Transceiver

Receive

Transmit

CAN_H

CAN_L

P4.5

P4.6

90

91

CAN_L

P2.0 47

Pa.b

Pc.d

C167CR

CAN_H
CAN_RxD

CAN_TxD

R(opt)

(Standby)

Vref

n.c.

Connection
to the

Application

(C164CI, C515C, C505C Interface as above)

CANPRES Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 70

C166-CoreC166-Core

167CR

PLL
OSC

2KB XRAM

Po
rt

6
Po

rt
0

Po
rt

4

Port 1 Port 5 Port 3 Port 2 Port 8 Port 7

CPU

Du
al

Po
rt RAM

2 KByte

Interrupt Controller
Watchdog

Peripheral Data

External Instr./Data

Instr./Data

MultiFunctional
10-Bit
ADC

USART

ASC
BRG BRG

SSC

Sync.
Channel

(SPI)

GPT1

T3

T4

GPT2
T2

T5

T6

CAPCOM1, 2

32 Channels

Ti
m

er
 7

Ti
m

er
 1

Ti
m

er
 0

Ti
m

er
 8

PWM Module
PT 1
PT 2
PT 3
PT 4

16 16 15 16 8 8

16

8

8

16

16

16

16
32

PEC

Interrupt Bus

Data

Data

128 KByte
ROM/

EPRON
FLASH

XB
US

 (1
6-

bit
 N

ON
 M

UX
 D

at
a

/ A
dd

re
ss

es
)

External Bus,
XBUS Control,
5 * CS Logic

CAN
2.0 B active

16 Channels

36 ext. IR

XTAL

C167CR Block Diagram

P4.5/ CAN RxD

P4.6/ CAN TxD

76

INDUSTRIAL AUTOMATION

SAM3X 84MHz ARM

• ARM CORTEX M3 Processor

• 2 x CAN 2.0B,

• 10/100 Mbps Ethernet, USB 2.0, I2C, UARTs

• 103 I/O pins

77

CAN IN AEROSPACE/SPACE
ATmegaS64M1 8-bit megaAVR® MCU

• Operating temperature -55° C to +125° C

• Supports CAN 2.0

• 8-bit UART & SPI

• 11 Channels ADC

Package

• Plastic aerospace applications

• Ceramic radiation-tolerant for space applications

• Same pinout as automotive-qualified AVR

78

ARDUINO CAN SHIELD

Frame

CAN interface

(DB-sub9)

USB interface

Microchip MCP2515 CAN controller
Microchip MCP2551 CAN transceiver
EM406 GPS Interface (asynchronous serial)

79

BIT STUFFING

CAN bus uses synchronous transmission

There are no start and stop bauds to frame each byte (e.g., slots in DMX)

There is a transparency problem when sending the same level for many bit periods

- There would be no timing at the receiver to discover sample time for bauds

- CAN uses bit stuffing to prevent this

80

BIT STUFFING

Senders and receivers count runs of bits sent at the same level

A sender that sends 5 bits of same polarity, inserts one stuffing bit (of the
opposite polarity) before sending the next bit.

These bits are not part of message.
Does not apply to CRC or ACK fields

A receiver that receives 5 bits of same polarity, deletes the following bit:
The removed stuffing bit must be the opposite polarity (or a STUFF ERROR)

Note this happens automatically and ensures receivers always see transitions

81

BIT STUFFING EXAMPLES

Examples - can you encode these using bit-stuffing?
• Original data:1010101001
• Original data: 1010000001
• Original data: 10100000111

Examples - can you decode these using bit-stuffing?

• Sent on cable as 10101111101
• Sent on cable as 10101111111
• Sent on cable as 10101101101

82

BIT STUFFING II
Examples - can you encode these using bit-stuffing?

• Original data:1010101001
• sent on cable as 1010101001, received as 1010101001 (not stuffed)

• Original data: 1010000001

• sent on cable as 10100000 (1) 01, received as 1010000001
• Original data: 10100000111

• sent on cable as 10100000 (1) 1111, received as 10100000111

Examples - can you decode these using bit-stuffing?

• Sent on cable as 10101111101
• This was stuffed as 101011111(0) 1, received as 1010111111

• Sent on cable as 10101111111
• This was stuffed as 101011111(1) 1, this is a stuffing error

• Sent on cable as 10101101101
• This was not stuffed, received as 10101101101 corre

cte
d!

83

MAXIMUM LENGTH

The size of a CAN frame is:

• 44 (header size) + 8n (n bytes of payload data)

Bit-stuffing can increase the size of a frame

• (44+8n) <= size after stuffing <= (44+8n)+(34+8n-1)/4

Bit stuffing in CAN ensures there are always some bit transitions

- Bit stuffing adds extra bits before sending and removes them before processing

- Can add up to one bit in five, maximum 20% additional overhead

84

ERROR FRAME

When the error flag is set, an Error Frame is sent

• This is six dominant bits followed by eight recessive bits

• This is of course illegal (due to the stuffing rules)

• All nodes recognise this as a fault condition

85

IDS & CAN ARBITRATION

During first part of message (arbitration period) each sender monitors bus

If two nodes attempt to simultaneously transmit arbitration rules select lowest
message ID, which continues to be sent.

After the arbitration period there can be only one sender!

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Arbitration Period*

* Note: When the IDE indicates a long ID,

the arbitration period is extended to cover the entire ID

86

ARBITRATION PERIOD

The “dominant” values replaces the “recessive” value

• A node continues if it does not see a dominant (0) when it sends a recessive (1)

Other nodes become idle:

• If a node sees a dominant (0) when it wanted to send a zero, it backs-off:

• It then repeats transmission as soon as idle (CSMA/CD)

• After arbitration one message is always correctly received

The need for bus monitoring limits the maximum propagation time

This limits the maximum allowed bus length

87

ARBITRATION EXAMPLE 1
Consider two nodes with two message IDs:

• Node A sends 15 (00000001111)

• Node B sends 16 (00000010000)

A

B

bus

88

ARBITRATION EXAMPLE 1
Consider two nodes with two message IDs sent at the same time::

• Node A sends CANI-D 15 001111

• Node B sends CAN-ID 16 0010000

Note: Logic 0 is dominant

A 0 0 0 0 0 0 0 0 1 1 1 1

B 0 0 0 0 0 0 0 1 - - - -

bus 0 0 0 0 0 0 0 0 1 1 1 1

SFD B backs off

89

ARBITRATION EXAMPLE 2
Consider three nodes with three message IDs sent at the same time:

• Node A sends CANI-D 14 0001110

• Node B sends CAN-ID 24 0011000

• Node C sends CAN-ID 7 00000111

Note: Logic 0 is dominant

A 0 0 0 0 0 0 0 0 1 - - -

B 0 0 0 0 0 0 0 1 - - - -

C 0 0 0 0 0 0 0 0 0 1 1 1

bus 0 0 0 0 0 0 0 0 0 1 1 1

SFD A,B backs off

90

LOWEST ID WINS ARBITRATION

11

Example: Binary Countdown (highest bit first)

Node 8
ID=0001000

Node 9
ID=0001001

Node 10
ID=0001010

Node 12
ID=0001100

Node 17
ID=0010001

17 drops out (stops competing for the bus)

12 drops out

10 drops out

9 drops out

8 has the bus

Value seen
on bus

Time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

0

0

0

1

0

0

1

Values that each node attempts to transmit:

Node 8 message

High priority messages are assigned lower IDs

91

ARBITRATION EXAMPLE 2
Consider two nodes with two message IDs:

• Node A sends 685 (01010101101)

• Node B sends 655 (01010001111)

A 0 0 1 0 1 0 1 - - - - -

B 0 0 1 0 1 0 0 0 1 1 1 1

bus 0 0 1 0 1 0 0 0 1 1 1 1

SFD A backs off

92

WAVEFORM
• Sketch the waveform for first 12 bit periods for the sequence that wins the

arbitration:

3.5V

2.5V

1.5V

Two signals on cable

• CAN_L

000110111111

• CAN_H

Decay

Value 0 0 1 1 0 1

SFD Stuffing

0 0.1 0.2 0.3 0.4 0.5 0.6

93

CAN FRAME CRC

Frame format:
• Start of Frame (1b) = 0 - dominant bit!
• Message ID (11b for CAN 2.0A) - Identifies one of 2048 message
• Control fields (3b) {RTR; ID (long of short); Reserved}
• Data length (4b)
• Data (0-64b)
• CRC (15b)
• CRC delimiter (1b) = 1 - recessive
• ACK field (2b)
• End of Frame Delimiter (7b) = 1
• 1 bit

Discard frames with any formatting errors and/or CRC errors

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

CRC

94

Cyclic Redundancy Check (CRC)

CRC is a form of digital signature (15 bit hash)

Calculated at the sender & sent

Re-calculated at the receiver

Two values compared at receiver

Able to verify the integrity of the frame

CRC detects:

Frames that have been corrupted

Bit timing errors

95

Galois Field 2 Division

quotient
divisor) dividend

remainder
content of
frame

generator
polynomial

fixed size (<divisor)
used for checksum

not used

You do not need to reproduce this long division in an exam!

96

Why Modulo 2 Division?

All CRC calculations ignore the carry

Because the hardware solution is simple!!!!!

Truth Table for Modulo-2 Division (XOR)

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

You do not need to reproduce this long division in an exam!

97

Example simplified to generate a short (4 bit) CRC

 1
 1 1 1 0 0 1 0 1 0 0 0 0
⊕ 1 1 0 0 1
 0|1 1 0 1

11001)

Divisor
(Generator Polynomial)

First digit
must be '1'

0's are appened
to the dividend
(flush bits)

This digit must always be 0

Modulo 2 division
replaces addition
in BCC calculation

You do not need to reproduce this long division in an exam!You do not need to reproduce this long division in an exam!

98

Example simplified to generate a short (4 bit) CRC

 1 0
 1 1 1 0 0 1 0 1 0 0 0 0
⊕ 1 1 0 0 1
 0|0 1 0 1 1
 ⊕ 0 0 0 0 0
 0|1 0 1 1

11001)
¨

1 Bring next digit of dividend down
2 Copy msb of value to quotient
3 Insert 0 (if quotient 0) or divisor (if quotient 1)
4 Calculate XOR sum
5 Discard msb of value (always 0)

You do not need to reproduce this long division in an exam!

99

 The CRC Value
 1 0 1 1 0 1 0 0
 1 1 1 0 0 1 0 1 0 0 0 0
⊕ 1 1 0 0 1
 0|0 1 0 1 1
 ⊕ 0 0 0 0 0
 0|1 0 1 1 0
 ⊕ 1 1 0 0 1
 0|1 1 1 1 1
 ⊕ 1 1 0 0 1
 0|0 1 1 0 0
 ⊕ 0 0 0 0 0
 0|1 1 0 0 0
 ⊕ 1 1 0 0 1
 0|0 0 0 1 0

 ⊕ 0 0 0 0 0
 0|0 0 1 0 0
 ⊕ 0 0 0 0 0
 0| 0 1 0 0

11001)

CRC value = Remainder

You do not need to reproduce this long division in an exam!

100

CRC Value when there was an Error
 1 0 1 1 0 1 1 1
 1 1 1 0 0 1 1 1 0 0 0 0
⊕ 1 1 0 0 1
 0|0 1 0 1 1
 ⊕ 0 0 0 0 0
 0|1 0 1 1 1
 ⊕ 1 1 0 0 1
 0|1 1 1 0 1
 ⊕ 1 1 0 0 1
 0|0 1 0 0 0
 ⊕ 0 0 0 0 0
 0|1 0 0 0 0
 ⊕ 1 1 0 0 1
 0|1 0 0 1 0

 ⊕ 1 1 0 0 1
 0|1 0 1 1 0
 ⊕ 1 1 0 0 1
 0| 1 1 1 1

11001)

CRC value = Remainder

Received CRC
replace by 0's

Bit error in frame

0 1 0 0

Received CRC
≠

Calculated CRC
⇒ ERROR !!!!!

You do not need to reproduce this long division in an exam!

101

Hardware Example: CRC-15

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0

A CRC-15 requires a 15-stage shift register and X-OR gates

Clock each input bit

Then “flush” the shift register by input of 15 0’s.

XORXORXOR XOR XOR

4

XOR

1

91115

XORXOR

58

input

output

102

CRC-15 properties

x0 Is a parity bit that detects all odd numbers of errors

Consider this CRC-15:

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0

The final code has a Hamming Distance of six

This means that five randomly distributed bit failures are detectable.

The probability of undetected multiple bit-errors is very low

103

CRC-15 and CAN
Many systems detect errors using a CRC to and discard corrupted frames.

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0

The CAN bus uses the CRC to verify each message

Each message where the received and calculated CRCs do not match

causes the CAN receiver to send an Error Frame

HOWEVER although the code has a Hamming Distance of six it is less
strong than it seems when used with CAN!
Corruption of a single stuffing bit leads to shifting of the data, effectively

inducing a 0.5 error rate, which reduces the power of CRC-15!!

Still, good enough for most applications.

104

Comparison of Integrity Checking Methods

Longitudinal
Parity Checksum CRC

Example NMEA GPS DMX SIP Frames CAN, USB

Hardware
Imnplementation

1 XOR gate per
bit Adder per byte XOR gates and

shift register

Software
Implementation

XOR instruction
+ register

Add instruction
+ register

maths, lookup
table + register

Detection of
multiple errors Poor Better Good

105

CAN-FLEXIBLE DATA (FD)

CAN-FD adds new formats

• Extends frame size up to 64B of data

• Increases transmission speed of data

106

CAN-FD HIGH RATE
[ISO 11898-1 and ISO 16845-1]

Classical CAN frame with 8 B of data

CAN-FD with 8 B of data

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will
prevent other high priority CAN-frames from starting to send. To keep the real-time performance
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as
reduce the time the CAN frame occupies the communication line and prevents other high priority
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames
with 64 bytes will be used during programming, which is normally done when a system is on pause
and there are no real time controls running. Even without real-time demand, it is still of interest to
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Classical CAN frame CAN-FD on same scale with 64B of data

CAN-FD with 64B of data at x8 rate

107

CAN-FD LARGE FRAMES

CAN-FD with 64B of data at x8 rate

Higher baud rate results in lower Eb/No
- and hence more stringent cabling/transceiver design

108

CAN SUMMARY
High speed control bus

• Supports multiple senders with arbitration

• Supports real-time applications

Low cost chips and cable

• High Reliability

• Plug and Play operation

Extensible

• CANopen extends CAN for other applications

• CAN-FD increases data rate to ~ 5-8 Mbps

109

COMPARE DMX & CAN
CAN DMX RDM

PHY RS-485 Async RS-485 Async

Cable 120R STP 120R STP

Direction Simplex HDX

Levels A inverse of B A inverse of B

Inter-Byte Gap Idle Idle

Senders 1 Any with Master

Frame SFD 92 µS Break 92 µS Break

Frame Data Size 1-512B 1-512B

Frame EOF Idle Idle

110

COMPARE DMX & CAN
CAN DMX RDM

PHY RS-485 Sync RS-485 Async RS-485 Async

Cable 120R STP 120R STP 120R STP

Direction HDX Simplex HDX

Levels 2.5V for 1
1.5, 3.5 for 0

A inverse of B A inverse of B

Inter-Byte Gap No Idle Idle

Senders Any 1 Any with Master

Frame SFD 0 92 µS Break 92 µS Break

Frame Data Size 0-8B 1-512B 1-512B

Frame EOF 111 1111 Idle Idle

111

USB

Not 2018

112

UNIVERSAL SERIAL BUS
• About 10,000,000,000 USB ports in use

• USB 1.1 (1996)

• Low-speed devices (1.5 Mbps)

• Full-speed devices (12 Mbps)

• USB 2.0

• High-speed devices Up to 480 Mbps

• Uses same connectors, Speed negotiated device-by-device

• USB 3

• Up to about 4 Gbps

113

USB

• ≤ 127 devices per controller

• Interface:

• +Data (3), -Data (2) - twisted pair, 90 Ohm

• Ground (4)

• +5V Power (1), 500mA (USB2), 900mA (UBS3)

114

USB SIGNALING

• Uses two line NRZI levels:

• J signaled by 0-0.3V; K signaled by 2.8-3.6V

• Differential: 0 is signaled by a change in J-K or vice
versa

1 0 1 1 0 0 1 0

J K K K J K K J

115

USB FRAMES

• Data formatted in frames

• Controller determines which device transmits

• Each frame starts with an all ‘0’ Sync Field

• (8bits low speed, 32 bits high speed)

• Frame has a packet ID

• Includes a CRC-16

• End of packet (EOP_ signaled by 2-bit exception sequence

SYNC PID DATA CRC EOP

116

BIT STUFFING
• 0-bit insertion (stuffing) used after 6 1’s

• Needed to allow any bit sequence within a frame.

• More efficient than using start/stop bauds for bytes!

• Sender physical layer monitors transmission

• Automatically injects a 0 after 6 1’s

• Receiver physical layer monitors reception

• Automatically removes a bit after 6 1’s

• If the removed bit is NOT a ‘0’ then the receiver has
detected an error condition.

117

BIT STUFFING

• `

A zero is inserted after every six consecutive 1s

118

USB (BIT STUFFING)

1) What is the maximum and minimum overhead when using
bit stuffing?

2) Determine the sequence of bits when the following data
pattern is received over a USB cable: 0111111110100000

3) Explain the implication of bit-errors (inversion) on a stream
that uses bit-stuffing. How may the problem that arises be
detected?

119

