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REMOTE DEVICE 
MANAGEMENT (RDM)

RDM Standardised as E1.20 (2010)

- RDM physical layer

- Packet format for RDM and the UID

- Communicating with devices

- Discovering the UIDs of devices

- RDM repeaters
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WHY RDM?

Before RDM, any change to 
a device meant actually 
setting switches/controls 
on the device itself. 

Using RDM, devices can be 
monitored and configuration 
can be changed remotely 
using the bus. 
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WHAT IS RDM?
Remote Device Management 

Allows bi-directional communication to/from a device using 
the DMX cable. 

This can be used to: 

- Build a list of all devices on a DMX bus 

- Set a device's DMX base address (which slots to read) 

- Set a device's DMX channel profile (what slots do) 

- Monitor the status or faults reported by a device 

- Download an upgrade to the device firmware 
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THE RDM PHYSICAL LAYER
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RDM HISTORY
Work started 2001, main spec 2010, updated 2023 

Should the standard use two wires or four wires? 

Soon after 2001 it was decided to use just two wires 

Two-wire DMX cable was then common 

It uses a half-duplex bus (one transmitter active at any time)  

Each RDM device also has a Unique ID (not DMX address) 

http://tsp.plasa.org/tsp/documents/docs/E1-20RDM_2006.pdf
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RDM BUS TERMINATION

A classical DMX sender is conected at one end of the DMX cable

In RDM, any of the 32 devices on the bus might send

The signal therefore travels in both directions along the cable

It is important to terminate BOTH ends of the cable with 120 Ohms
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RDM PHYSICAL LAYER

RDM uses a Bi-directional EIA-485 bus

An RDM device uses tri-state drivers

- This uses Half Duplex

Each device controls the direction of transmission:

(a) The master normally sends; Others normally listen.

(b) These roles can be reversed to allow equipment to send.

(c) There can be moments where there is no sender.

(d) There may be transients when more than one device tries

      to send (in half-duplex these result in signal corruption).

logic in

line 

In

Out logic out
(RDM when 

enabled)

direction control
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HALF DUPLEX OPERATION
(1) One device is the master  - usually the DMX sender.

The master controls who can transmit to the bus.

The master initiates a communications request to a "slave”  by 
addressing the unit and then setting the transceiver to receive.

(2) The master listens for a response (receive mode).

The slave receiver recognises a control slot.

If the slot addresses the slave, it enables its own transmitter. 

(3) Once data sent, the slave reverts back to receive mode.

Master resumes control after reception from slave (or a timeout).

There are two roles assumed to enable an equipment to send:
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RDM - HALF DUPLEX

Normal DMX Data

RDM controller 
message

RDM response

Idle

Direction
of transmission

Forward ForwardRev

Time
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RDM - IDLE TIMES

Idle

Direction
of transmission

Forward ForwardRev

Time

Timing between master and slave can be slightly delayed
Therefore small idle periods where the bus “floats”.

Time before start of next regular 
control frame sent by the master
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THE CONTROLLER

When the line is idle, it “floats”

This makes a receiver vulnerable to noise

Instead, a bias network is added to ensure the line level > 245 mV

Line A is connected via bias resistance to GND

Line B isconnected via bias resistance to +5V

Of course, only do this once for each bus!
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CALCULATING BIAS
Each EIA-485 node has an input impedance of 12K. 

32 nodes in parallel present load of 376 ohms. 

Two 120 Ohm terminators - a combined 60 Ohm load.

Total load is therefore 51.8 ohms. 

To maintain at least 245 mV between B & A line, needs a bias current of ~ 
4.7 mA to flow through this load. 

A 5V supply needs a series resistance of 1063 Ohms, subtract 51.8 
Ohms of bus loading, this leaves 1011 Ohms. 

Placing half as a pull-up to 5V and half as a pull-down to ground gives a 
bias of 505 Ohms, 510 Ohms to nearest preferred value. 
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RDM BIAS

Idle Bus
(no sender)

Driven Bus
(sender active)
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THE PACKET FORMAT FOR RDM 
AND THE UID

An RDM packet is sent in a DMX frame with: 

Start Code (value 0xCC, 204 decimal)

RDM Header (24 slots); 

Message Length; Source; Dest.; Command; Param.; etc

RDM Data Area (variable)

Checksum (2 slots) - 16-bit sum of all slot values
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IDENTIFYING RDM DEVICES

All RDM frames use a Start code of 0xCC 

  “simple” devices already ignore non-zero start codes! 

Each RDM device has a Unique ID (UID) 

The UID is assigned by a manufacturer 

This is not a DMX base address (position in the frame) 

The UID is a globally unique identifier 
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RDM PARAMETERS
Each device has:

A UID (permanently set by the manufacturer)

A flag to say whether the device is addressed

A flag to say whether the device is muted (see later)

A set of parameters stored in an EEPROM data (non-volatile):

The device DMX base address

The current profile (mapping slots to parameters)

Other configuration parameters (defined by the profile)

Other status parameters (e.g., temperature, current, time used)
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RDM UNIQUE ID
All RDM equipment is uniquely identified:

Manufacturers assign a unique 6 byte UID 

FFFF: FFFF FFFF (Broadcast)

A 2B Manufacturer ID is assigned to each manufacturer

UID = 2B  Manufacturer ID + 4B Serial Number (Flat address)

2B  Manufacturer ID: FFFF FFFF (All manufacturer systems)

DMX base address can be changed depending on the use

   The ID is not the DMX base address 

    An RDM Device is addressed irrespective of DMX address
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RDM CHECKSUM
• Sender:

• Calculates the unsigned, modulo 0x10000, 16-bit additive 
checksum of the entire packet slot data (from START Code 
to end of frame)

• Places result in the Checksum field of the frame

• Receiver:

• Calculates the unsigned, modulo 0x10000, 16-bit additive 
checksum of the entire packet slot data (from START Code to 
end of frame)

• Compares result with the Checksum field of the frame

• Only if two match frame is OK, otherwise frame is discarded
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RDM PACKET FORMAT

Decode

A

B

Start 
Code RDM Header (24 slots), RDM Data, and Checksum 
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COMMUNICATING WITH RDM 
DEVICES
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RDM COMMANDS
RDM devices do not respond to commands unless addressed

They do read DMX data sent with a start code of 0x00

To communicate with a specific device using RDM:

1. Address the device using the UID (“Listen" sent to the UID)

2. Write (set) or read (get) information stored in the set of parameters

3. Then the device is released (“Quiet”)
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MASTER MUST KNOW UIDS
The master needs to know the UID of each receiver

Important to address each device

Important to know what equipment is on the bus.

i.e. parameters need to be interpreted in context.

Key question is how to find out what is connected!

281,474,976,710,656 UID va
lues!
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RDM GET START ADDRESS

GET_Command 
(DMX-start-address)

GET_Command_Response 
(DMX-start-address,
<base addreses> )

Listen (UID)

Quiet
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RDM SET START ADDRESS

SET_Command 
(DMX-start-address,
<base address>)

SET_Command_Response 
(DMX-start-address,
<base address> )

Listen (UID)

Quiet
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CONFIG DMX ADDRESS
A
B

Slot
UID

Response from RDM device …
address now set to 16

SET DMX_START_ADDRESS 16

2
01 ...

1
0 00...

3
1 ...

Reliability requires checking address was set correctly
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RDM GET SENSOR VALUE

LISTEN <uid>

GET_Command 
(sensor)

QUIET

GET_Command_Response 
(sensor, sensor-values)
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TIMING OF RESPONSES

A “simple DMX” device ignores start code > zero
RDM takes time, this limits the maximum frame rate of sender.

Commands typically require only one receiver to respond 
RDM not recommended during time critical communications

Normal DMX Data

RDM controller 

RDM response

Idle
Direction
of transmission

Forward ForwardRev

Time
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RDM DISCOVERY

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE 

BRANCES OF THE TREE TO FIND THE 
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off, 

discovery is complete.
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RDM MASTER

The RDM master (controller)

Needs to find  a list of the devices that respond to RDM

Discovery is used to ask devices to respond

Devices respond to discovery messages by sending their UID
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DISCOVERY - ONE DEVICE

DISCOVER

Discover_Response 
(UID)

When more than one device responds, the Discover_response 
will be corrupted by multiple devices sending at the same time!

Once the UID is discovered the controller can address the device.
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RDM DEVICE MUTE FLAG
Each RDM device has a MUTE Flag

The RDM bus controller can set or clear this MUTE Flag

DISC_UNMUTE (UID)

DISC_UNIQUE_BRANCH (UID-range)

Once set, the device does not respond to Discovery messages

This is used in the discovery algorithm in tow ways:

To resolve collisions (avoiding two replies at the same time)

To avoid discovered devices responding, once found.
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RDM - UID DISCOVERY
Master discovers UID of each device on network.

Starts with DISC_UNMUTE FFFF: FFFF FFFF 

- Tells all muted devices to respond

- Master clears its list of responders

RDM discovers devices polling 

DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- Tells all devices to respond:

No response? ... then there are no responders.

One response ... we’ve found the only responder (add to list).

Collision ... there is more than one responder!

Range to respond
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RDM - UID DISCOVERY
RDM  then starts a binary search

- divides the search space into two halves:
DISC_UNIQUE_BRANCH [0000: 0000 0000 - 7FFF: FFFF FFFF]

- Do these devices have the first bit unset?
No response? ... there are no responders in bottom half.
One response ... we’ve found a responder, add to list.

Tell responder to mute, and expand the search range.
Collision ... there is more than one responder:

divide the range by two and loop...
Repeat for other half of space:

DISC_UNIQUE_BRANCH [8000: 0000 0000 - FFFF: FFFF FFFF]
•
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RDM DISCOVERY

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE 

BRANCES OF THE TREE TO FIND THE 
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off, 

discovery is complete.

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE 

BRANCES OF THE TREE TO FIND THE 
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off, 

discovery is complete.

RDM DEVICE DISCOVERY
� STEP 3 - THE CONTROLLER GOES DOWN THE 

BRANCES OF THE TREE TO FIND THE 
INDIVIDUAL DEVICES
� As the controller finds the RDM devices, it mutes them.
� When the controller can no longer find devices to turn off, 

discovery is complete.

Isolate parts of the tree using a Binary Search
Discovery finishes when there are no more devices to MUTE
At this stage, the master has a list of all device UIDs
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DISCOVERY OF DEVICE UID
DISC_UNIQUE_BRANCH  ???? ?   A

B

Slot
UID

???? ? - No response
All devices have been found!

- 1 response slot 3 = 11000

 DISC_UNIQUE_BRANCH 1??? ? 
 Multiple response

2
10 ...

1
0 00...

3
1 ...

DISC_MUTE 0000 1

DISC_MUTE 11000

DISC_MUTE 10011

-  1 response, slot 1 = 00001

UMUTE ALL: ???? ?

Muted

Selected

Multiple response
DISC_UNIQUE_BRANCH  0??? ?   

DISC_UNIQUE_BRANCH 10?? ? 
1 response, slot 2 = 10011

DISC_UNIQUE_BRANCH 1??? ? 
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DISCOVERING CHANGES
After discovery the controller ought to know the UID of every device
It can then retrieve the DMX base address, equipment profile, and any 
other required parameters

What happens when a new RDM device is added to the bus?
....Or a discovered device its removed?
The RDM Master controller could use the discovery algorithm
... This can require many commands and take a long time

Instead, a RDM Master controller could be smarter 
Incremental discovery uses the already discovered list of devices
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CHECKING DISCOVERED LIST 
OF DEVICES

First step: Check the list of responders in the list.
Send a command to each UID

If the device responds, then it is still there.
If it it does not respond, remove the UID from the list
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DISCOVERING NEW DEVICES
The second part of incremental discovery is checks for new devices

Send DISC_UNMUTE FFFF: FFFF FFFF 
Send DISC_MUTE each previously discovered slot in list
See if any new responders have appeared
i.e. DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- After this, the RDM Master controller knows all devices on the bus
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LOSS OF COMMANDS

What happens when a responder misses a command?

Missing a MUTE or UNMUTE breaks the protocol!

- it is helpful to repeat all critical commands

- also helps to add delay between repeated commands.
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DISCOVERY PROBLEM
The initial design had a problem:

The lights “flickered” in the first design.

... because more than one device could respond

... the collision signal could look like a start code of zero!

... other devices would read this as data

The solution came in two parts:

1) Do not send a Break/MAB for RDM responses, instead 
respond using a special pre-amble sequence

2) Encode data so it is highly unlikely that a “combined” 
signal is wrongly interpreted as actual data.
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RDM SPLITTERS
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DMX REPEATER (RECAP)

A DMX repeater is designed for a simplex link
All DMX frames originates at the control
The repeater/splitter copies the DMX frames to all the output ports

A DMX repeater will never repeat RDM responses from output ports  
back to the controller

Input
port

Output
port

Output
port

DMX

Controller
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RDM SPLITTERS/REPEATERS

An RDM repeater/splitter needs to be different to support half-duplex.
The repeater/splitter configures the transceivers at the ports so a 
responder can send a frame to the command port, when it needs to.
This frame only needs to be sent to the command port (i.e. master).     
(A slave never needs to send frames to other slaves).

Command
port

Responder
port

Responder
port

Input
port

Output
port

Output
port

DMX RDM

control
logic to
enable

responders
to send to 

the command
port
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RDM REPEATERS DETAIL

Two types of port

Responder Ports receive commands, and transmit responses 
towards controller

Command Ports sends commands and can receives responses

Command
port

Responder
port

control
logic

21. Q: How many luminaries can I link together? 
 
A: You can link a maximum of 31 luminaires together. If your system has more than 31 

luminaires integrated you need to add a Splitter / booster (repeater) to your system. 
 
 
22. Q: What is a splitter and a booster? 
 
A: A splitter (repeater) is a device that splits up a DMX / RDM signal into multiple 

amplified signals. A splitter / Booster comes in many different versions. Below is a 
typical version with 1 DMX input, 1 though put and 8 outputs. 

 

 
 

Responder
port
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RDM REPEATERS DETAIL

All ports can be enabled to send or receive
Normally, the command port is in receive mode, other ports in send
When a break is received on a responder port.

A frame is received by the repeater on a responder port
The frame is repeated towards the master using the command port

The repeater returns the command port back to receive mode

Command
port

Responder
port

control
logic

21. Q: How many luminaries can I link together? 
 
A: You can link a maximum of 31 luminaires together. If your system has more than 31 

luminaires integrated you need to add a Splitter / booster (repeater) to your system. 
 
 
22. Q: What is a splitter and a booster? 
 
A: A splitter (repeater) is a device that splits up a DMX / RDM signal into multiple 

amplified signals. A splitter / Booster comes in many different versions. Below is a 
typical version with 1 DMX input, 1 though put and 8 outputs. 

 

 
 

Responder
port
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RDM REPEATER NETWORKS
 

2 3 4

4

1

RDM Repeaters need to support half-duplex

Overall network timing important for half duplex

No more than 4 repeaters in series (timing constraint)

Controller

Device

Device

Device

Device

Device
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RDM QUESTIONS
• Does RDM slow-down the speed of DMX update?

• Why did the first version of RDM make DMX equipment 
“flicker”?

• Does RDM replace DMX?

•
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FURTHER DMX READING

• “Control Freak - A real world guide to DMX-512 and Remote Device 
Management”, Wayne Howell, 2010

• "Recommended Practice for DMX 512: A Guide For users and Installers", Adam 
Bennette, (PLASA) *

• ANSI E1.11,  Asynchronous Serial Digital Data Transmission Standard for 
Controlling Lighting Equipment and Accessories, USITT DMX512-A, American 
National Standards Institute, 1990 (PLASA) *

• ANSI E1.20,  Remote Device Management, over USITT DMX 512 Networks, 
2003 (PLASA) *

* Free download at tsp.plasa.org
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SYNCHRONOUS 
CONTROL
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CAN

Controller Area Network
G Fairhurst
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POINT-TO-POINT WIRING

Page 2

CANPRES  Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 2

How it all began...

Engine
Control

Anti-
Lock

Brakes

Trans-
mission
Control

Active
Suspen-

sion

Dash-
board

Lighting

Air
Con-
dition Power

Locks

Power
Seats

Power
Win-
dows

Airbag

•The development of CAN began when more and more electronic
devices were implemented into modern motor vehicles. Examples of
such devices include engine management systems, active suspension,
ABS, gear control, lighting control, air conditioning, airbags and central
locking. All this means more safety and more comfort for the driver and
of course a reduction of fuel consumption and exhaust emissions.

Traditional car wiring loom can be several 
miles of cable!!
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CANPRES  Version 2.0

Siemens Microelectronics, Inc.
October 98
Slide 4

How it all began  (cont.)

Engine
Control

Anti-
Lock

Brakes

Trans-
mission
Control

Active
Suspen-

sion

Lighting

Air
Con-
dition Power

Locks

Power
Seats

Power
Win-
dows

Airbag

CAN
CAN

CANCAN

CANCAN

CAN

CAN

CAN

CAN
Dash-
board

C
AN

C
AN

High Speed Low Speed

•The solution to this problem was the connection of the control systems
via a serial bus system. This bus had to fulfill some special
requirements due to its usage in a vehicle.
•With the use of CAN, point-to-point wiring is replaced by one serial bus
connecting all control systems. This is accomplished by adding some
CAN-specific hardware to each control unit that provides the "rules" or
the protocol for transmitting and receiving information via the bus.

A bus significantly reduces cable & cost
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CAN BUS 

1 Intersil  
 

 
Using CAN Bus Serial Communications  

in Space Flight Applications 
 

Introduction 
The controller area network (CAN) protocol is a proven, highly reliable communication system for harsh 
environments and has been used in automotive and industrial applications for over 30 years. The CAN two-
wire bus multi-master/multi-drop topology makes it easy to add additional functionality to a system while 
significantly reducing the number of wires associated with wire intensive point-to-point topologies. The space 
community is well aware of the CAN protocol’s many benefits and advantages, and the need for it to replace 
traditional spacecraft bus architectures.  

This article examines the use of CAN bus in space flight applications. We will discuss the basics of the CAN 
serial communications protocol, advantages of using CAN for satellite communications and the special 
requirements needed by a radiation tolerant CAN transceiver. 

The European Space Agency (ESA) is leading the development effort to get the hardware, firmware and 
software in place to implement CAN for on-board spacecraft communications and control systems. The 
ECSS-E-ST-50-15C (May 1, 2015) document was created by ESA to standardize the CAN communication 
protocol. It extends the definition of the ISO 11898-1/-2:2003 CAN protocol and specifies the parameters for 
serial communication and hardware connection to meet spacecraft requirements. 

CAN Protocol Basics 
Figure 1 shows a block diagram of a typical CAN bus network. It consists of two differential signal lines 
designated as CANH and CANL. Electronic control unit (ECU) devices connect to the differential data lines 
and communicate with each other over the differential bus. 120Ω termination resistors are used at the ends 
of the bus to suppress any electrical signal reflections.  

 
Figure 1. Block Diagram of a CAN Bus Network 

A typical ECU consists of a CAN transceiver, CAN controller/embedded microprocessor (µP), clock source, 
analog-to-digital converter (ADC) and/or digital-to-analog converter (DAC), transducer, signal conditioning 
circuitry, sensor and actuator (see Figure 2). 

 

120 Ohm shielded twisted pair cable 
   Specified as 108 - 132 Ohms

The conductors in the pair are labelled CANH and CANL
A shield reduces EMI

Bus terminated at each end with 120 Ohm resistor
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CAN TRANSMISSION

Max 1 Mbps data transmission
(CAN-FD is compatible and works at 5 Mbps)
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CAN BUS LENGTH

22

Arbitration Limits Network Size
� Need 2*tpd per bit maximum speed

[Siemens]

MAximum bus length is a function of bus speed
1 Mbps <= 40m

125 kbps <= 500m
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CAN TRANSCEIVER

Logic 1 (recessive): No signal sent

• Output at CAN_L floats to 2.5V

• Output at CAN_H floats to 2.5V

• i.e. there is a no voltage difference between the conductors

Logic 0 (dominant):  Forces bus to a zero level

• Output at CAN_L driven to 1.5V

• Output at CAN_H driven to 3.5V

• i.e. there is a 2V voltage difference between the conductors

A receiver detects a 0 when CAN_H-CAN_L > 0.9V

CAN transceivers use Open-Collector (O/C) logic to connect to the bus
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CAN  CABLE VOLTAGE
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TI SNX5HVD251INDUSTRIAL 
CAN BUS TRANSCEIVER 

1

2
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Driver
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Folder

Sample &
Buy
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Tools &
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SN55HVD251, SN65HVD251
SLLS545G –NOVEMBER 2002–REVISED OCTOBER 2015

SNx5HVD251 Industrial CAN Bus Transceiver
1 Features 3 Description

The HVD251 is intended for use in applications
1• Drop-In Improved Replacement for the

employing the Controller Area Network (CAN) serialPCA82C250 and PCA82C251
communication physical layer in accordance with the

• Bus-Fault Protection of ±36 V ISO 11898 Standard. The HVD251 provides
• Meets or Exceeds ISO 11898 differential transmit capability to the bus and

differential receive capability to a CAN controller at• Signaling Rates(1) up to 1 Mbps
speeds up to 1 megabits per second (Mbps).• High Input Impedance Allows up to 120 Nodes on
Designed for operation in harsh environments, thea Bus
device features cross-wire, overvoltage and loss of• Bus Pin ESD Protection Exceeds 14 kV HBM
ground protection to ±36 V. Also featured are

• Unpowered Node Does Not Disturb the Bus overtemperature protection as well as –7-V to 12-V
• Low-Current Standby Mode: 200-µA Typical common-mode range, and tolerance to transients of

±200 V. The transceiver interfaces the single-ended• Thermal Shutdown Protection
CAN controller with the differential CAN bus found in• Glitch-Free Power-Up and Power-Down CAN Bus industrial, building automation, and automotive

Protection for Hot-Plugging applications.
• DeviceNet Vendor ID #806

Rs, pin 8, selects one of three different modes of
(1) The signaling rate of a line is the number of voltage operation: high-speed, slope control, or low-power

transitions that are made per second expressed in bps (bits mode. The high-speed mode of operation is selectedper second).
by connecting pin 8 to ground, allowing the
transmitter output transistors to switch as fast as2 Applications possible with no limitation on the rise and fall slope.
The rise and fall slope can be adjusted by connecting• CAN Data Buses
a resistor to ground at pin 8; the slope is proportional• Industrial Automation
to the pin's output current. Slope control with an

• SAE J1939 Standard Data Bus Interface external resistor value of 10 kΩ gives about 15-V / µs
• NMEA 2000 Standard Data Bus Interface slew rate; 100 kΩ gives about 2-V/µs slew rate.

If a high logic level is applied to the Rs pin 8, theBlock Diagram
device enters a low-current standby mode where the
driver is switched off and the receiver remains active.
The local protocol controller returns the device to the
normal mode when it transmits to the bus.

Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)

SN55HVD251 WSON (8) 4.00 mm × 4.00 mm
SOIC (8) 4.90 mm × 3.91 mm

SN65HVD251
PDIP (8) 9.81 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
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DIFFERENTIAL RECEPTION

CAN_H

Noise

Received signal (CAN_H) - (CAN_L)

0       0       1       0           1       1       0

CAN_L

2V
0.9 V
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3.5V

2.5V

1.5V

Two signals on cable

• CAN_L 
• CAN_H

Decay

Value     0        0          1        1        0        1         1         1 ...

0 0.1 0.2 0.3 0.4 0.5 0.6

CAN SIGNAL
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CAN FRAME

There is no bus master

All frames have a format defined by the header

Each frame may carry some data

Each frame ends with a common trailer

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Header Trailer
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CAN ID
Every frame has a CAN_ID - this is NOT an address.

CAN_IDs are unique (centrally assigned in a network), lowest has highest priority

Nodes can send any CAN_ID, but usually use one CAN_ID for each event
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

11-bit ID IDE flag indicates if 18 more address bits directly follow the IDE 

- -
CANID 11b

-
0 CANID +18b

- -
CANID 11b

-
1

If IDE = 0, the CAN-ID is 11 bits (CAN 2.0A)

If IDE = 1, the CAN-ID are 29 bits (CAN 2.0B - with 18 bit extension)
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CAN FRAME FORMAT
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

• Start of Frame (1b) = 0 - dominant bit!
• Control fields (3b) {RTR; ID (long of short); Reserved/FDF}

• Data length (4b)
• Data (0-64b)
• CRC (15b)
• CRC delimiter (1b) = 1

• ACK field (2b)  
• End of Frame Delimiter (7b) = 1

Data  0-8 bytes (0-64b), sent msb first
DLC = Data Length Code 0-8 bytes
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CAN FRAMES
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CAN ACK FIELD
Senders monitor the bus while transmitting...

The sender sends the ACK (recessive) at the end of each frame

- When a receiver sees the end of the message, it sets the ACK bit to dominant

The sender now knows that message has actually been sent by the bus 

- If the sender does not see this bit set, it knows there was an "ACK ERROR"!

EVERY WORKING BUS >= 2 NODES!
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

ACKD = 1
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END OF FRAME
Valid frames finish with a series of seven recessive bits, i.e. "idle" 

Followed by a 3-bit inter-frame space

Senders monitor the bus while transmitting...

CRC, DEL, ACK, EOF all need to be seen correctly

Otherwise the frame is in error

An ERROR FRAME is sent to force all nodes to see the fault

This typically causes the frame to be resent
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.
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4 CAN FRAME TYPES

• DATA - Broadcasts data to the bus (most common)

• REMOTE - Request data from a node (see later)

• ERROR FRAME - Reports an error by a node

• OVERLOAD FRAME - Flow control to delay transmission

•
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.
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CAR ELECTRICAL SYSTEM
Car electrical system components:

• Dashboard 
• Engine Control Units (ECUs)
• Anti-lock Braking System (ABS)
• Active Suspension
• Transmission Control
• Lighting
• AirCon
• AirBags
• Power Windows; Power seats; Power Locks; etc

Each component can produce and/or consume CAN frames

produce and/or consume

produce

consume
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USING CAN FRAMES
CAN Bus

The CAN ID identifies the message/event

It is not the address of a sender or the receiver

An input module produces CAN frames

An ID is assigned to each event

An output module consumes one or more CAN frames

For each configured ID sets an appropriate output
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RECEIVING FRAMES/EVENTS

Any node can receive any data (event)

Nodes simply select which messages are of interest and receive them
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Frame Formats - Remote Frame (cont.)

Data Frame; Identifier 'oil_tmp';
contains desired information ~~~~

~~~~~

Remote Frame; Identifier 'oil_tmp'Node A

Node B

(oil temp.-
sensor)

How hot is the oil ?

115°C

115 °C !

q Remote Frame scenario

•If a node wishes to request the data from the source, it sends a
Remote Frame with an identifier that matches the identifier of the
required Data Frame. The appropriate data source node will then send
a Data Frame as a response to this remote request.71

CAN FRAME PROCESSING

Sender Intended Recipient

Sender Intended Recipient

Sender Intended Recipient

Sender Intended Recipient

Frames sent with an ID

Frames propagate to all nodes

Nodes sees all frames

Nodes filter only wanted set of  IDs

Some frames are of interest to no nodes at all!

The same frames could be of interest to more than one node
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REMOTE FRAMES

Remote Frames are sent in two stages:

• Remote Frame sent to ask for a data frame
• Data Frame is sent to the CAN bus
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Frame Formats - Remote Frame (cont.)

Data Frame; Identifier 'oil_tmp';
contains desired information ~~~~

~~~~~

Remote Frame; Identifier 'oil_tmp'Node A

Node B

(oil temp.-
sensor)

How hot is the oil ?

115°C

115 °C !

q Remote Frame scenario

•If a node wishes to request the data from the source, it sends a
Remote Frame with an identifier that matches the identifier of the
required Data Frame. The appropriate data source node will then send
a Data Frame as a response to this remote request.73
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CAN APPLICATIONS
History
• 1983 Original application was for car electrical systems (Robert Bosch)
• 1987 First CAN controllers by Intel and Philips
• 1993 ISO 1198
• 1995 Standards developed from CAN: CANopen;  DeviceNet; J.1939

Original applications (~85% market) 
• Cars, trucks, agricultural equipment, etc

Other applications (~15% market)
• Trains, Planes (non safety-critical - e.g. aircon)
• Medical equipment, (XRay, CAT scanners, etc) 
• Building automation ( e.g. lifts), Office automation 
• Household appliances (including coffee makers), Stage control (Chillinet)
• Military vehicles, MILCAM (combines CANopen & J.1939)
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ELECTRONIC  CONTROL UNIT

CAN controllers integrated in a range of microcontrollers (ECU) 

- usually use an external transceiver
6
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Connecting the C167CR to CAN
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INDUSTRIAL AUTOMATION 

SAM3X 84MHz ARM

• ARM CORTEX M3 Processor 

• 2 x CAN 2.0B, 

• 10/100 Mbps Ethernet, USB 2.0, I2C, UARTs

• 103 I/O pins
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CAN IN AEROSPACE/SPACE
ATmegaS64M1 8-bit megaAVR® MCU 

• Operating temperature -55° C to +125° C

• Supports CAN 2.0

• 8-bit UART & SPI

• 11 Channels ADC

Package

• Plastic aerospace applications

• Ceramic radiation-tolerant for space applications

• Same pinout as automotive-qualified AVR
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ARDUINO CAN SHIELD 

Frame

CAN interface 

(DB-sub9)

USB interface 

Microchip MCP2515 CAN controller  
Microchip MCP2551 CAN transceiver 
EM406 GPS Interface (asynchronous serial)
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BIT STUFFING

CAN bus uses synchronous transmission

There are no start and stop bauds to frame each byte (e.g., slots in DMX)

There is a transparency problem when sending the same level for many bit periods

- There would be no timing at the receiver to discover sample time for bauds

- CAN uses bit stuffing to prevent this
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BIT STUFFING 

Senders and receivers count runs of bits sent at the same level

A sender that sends 5 bits of same polarity, inserts one stuffing bit  (of the 
opposite polarity) before sending the next bit.

These bits are not part of message.
Does not apply to CRC or ACK fields

A receiver that receives 5 bits of same polarity, deletes the following bit:
The removed stuffing bit must be the opposite polarity (or a STUFF ERROR)

Note this happens automatically  and ensures receivers always see transitions
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BIT STUFFING EXAMPLES

Examples - can you encode these using bit-stuffing?
• Original data:1010101001 
• Original data: 1010000001 
• Original data: 10100000111 

Examples - can you decode these using bit-stuffing?

• Sent on cable as 10101111101
• Sent on cable as 10101111111
• Sent on cable as 10101101101
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BIT STUFFING II
Examples - can you encode these using bit-stuffing?

• Original data:1010101001 
• sent on cable as 1010101001, received as 1010101001 (not stuffed)

• Original data: 1010000001 

• sent on cable as 10100000 (1) 01, received as 1010000001
• Original data: 10100000111 

• sent on cable as 10100000 (1) 1111, received as 10100000111

Examples - can you decode these using bit-stuffing?

• Sent on cable as 10101111101
• This was stuffed as 101011111(0) 1, received as 1010111111

• Sent on cable as 10101111111
• This was stuffed as 101011111(1) 1, this is a stuffing error

• Sent on cable as 10101101101
• This was not stuffed, received as 10101101101 corre

cte
d!
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MAXIMUM LENGTH

The size of a CAN frame is:

• 44 (header size) + 8n (n bytes of payload data)

Bit-stuffing can increase the size of a frame

• (44+8n) <= size after stuffing <= (44+8n)+(34+8n-1)/4

Bit stuffing in CAN ensures there are always some bit transitions

- Bit stuffing adds extra bits before sending and removes them before processing

- Can add up to one bit in five, maximum 20% additional overhead
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ERROR FRAME

When the error flag is set, an Error Frame is sent

• This is six dominant bits followed by eight recessive bits

• This is of course illegal (due to the stuffing rules)

• All nodes recognise this as a fault condition
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IDS & CAN ARBITRATION

During first part of message (arbitration period) each sender monitors bus 

If two nodes attempt to simultaneously transmit arbitration rules select lowest 
message ID, which continues to be sent.

After the arbitration period there can be only one sender!
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Arbitration Period*

* Note:  When the IDE indicates a long ID, 

the arbitration period is extended to cover the entire ID
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ARBITRATION PERIOD

The “dominant” values replaces the “recessive” value 

• A node continues if it does not see a dominant (0) when it sends a recessive (1)

Other nodes become idle:

• If a node sees a dominant (0) when it wanted to send a zero, it backs-off:

• It then repeats transmission as soon as idle (CSMA/CD)

• After arbitration one message is always correctly received

The need for bus monitoring limits the maximum propagation time

This limits the maximum allowed bus length
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ARBITRATION EXAMPLE 1
Consider two nodes with two message IDs:

• Node A sends 15 (00000001111)

• Node B sends 16 (00000010000)

A

B

bus
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ARBITRATION EXAMPLE 1
Consider two nodes with two message IDs sent at the same time::

• Node A sends CANI-D 15 001111

• Node B sends CAN-ID 16  0010000

Note: Logic 0 is dominant

A 0 0 0 0 0 0 0 0 1 1 1 1

B 0 0 0 0 0 0 0 1 - - - -

bus 0 0 0 0 0 0 0 0 1 1 1 1

SFD B backs off
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ARBITRATION EXAMPLE 2
Consider three nodes with three message IDs sent at the same time:

• Node A sends CANI-D 14 0001110

• Node B sends CAN-ID 24  0011000

• Node C sends CAN-ID 7  00000111

Note: Logic 0 is dominant

A 0 0 0 0 0 0 0 0 1 - - -

B 0 0 0 0 0 0 0 1 - - - -

C 0 0 0 0 0 0 0 0 0 1 1 1

bus 0 0 0 0 0 0 0 0 0 1 1 1

SFD A,B backs off
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LOWEST ID WINS ARBITRATION

11

Example: Binary Countdown  (highest bit first)

Node 8
ID=0001000

Node 9
ID=0001001

Node 10
ID=0001010

Node 12
ID=0001100

Node 17
ID=0010001

17 drops out (stops competing for the bus)

12 drops out

10 drops out

9 drops out

8 has the bus

Value seen
on bus

Time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

0

0

0

1

0

0

1

Values that each node attempts to transmit:

Node 8 message

High priority messages are assigned lower IDs
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ARBITRATION EXAMPLE 2
Consider two nodes with two message IDs:

• Node A sends 685 (01010101101) 

• Node B sends 655 (01010001111)

A 0 0 1 0 1 0 1 - - - - -

B 0 0 1 0 1 0 0 0 1 1 1 1

bus 0 0 1 0 1 0 0 0 1 1 1 1

SFD A backs off

92



WAVEFORM
• Sketch the waveform for first 12 bit periods for the sequence that wins the 

arbitration:

3.5V

2.5V

1.5V

Two signals on cable

• CAN_L 

000110111111

• CAN_H

Decay

Value     0        0          1        1        0        1 

SFD Stuffing

0 0.1 0.2 0.3 0.4 0.5 0.6
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CAN FRAME CRC

Frame format:
• Start of Frame (1b) = 0 - dominant bit!
• Message ID (11b for CAN 2.0A) - Identifies one of 2048 message
• Control fields (3b) {RTR; ID (long of short); Reserved}
• Data length (4b)
• Data (0-64b)
• CRC (15b)
• CRC delimiter (1b) = 1 - recessive
• ACK field (2b) 
• End of Frame Delimiter (7b) = 1
• 1 bit

Discard frames with any formatting errors and/or CRC errors
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Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

CRC
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Cyclic Redundancy Check (CRC)

CRC is a form of digital signature (15 bit hash)

Calculated at the sender & sent 

Re-calculated at the receiver

Two values compared at receiver

Able to verify the integrity of the frame

CRC detects:

Frames that have been corrupted

Bit timing errors
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Galois Field 2 Division

quotient
divisor )  dividend

___________

remainder
content of
frame

generator
polynomial

fixed size (<divisor)
used for checksum

not used

You do not need to reproduce this long division in an exam!
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Why Modulo 2 Division?

All CRC calculations ignore the carry

Because the hardware solution is simple!!!!!

Truth Table for  Modulo-2 Division (XOR)

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

You do not need to reproduce this long division in an exam!
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Example simplified to generate a short (4 bit) CRC

               1
   1 1 1 0 0 1 0 1  0 0 0 0
⊕  1 1 0 0 1
   0|1 1 0 1 

 

11001  )

Divisor
(Generator Polynomial)

First digit
must be '1'

0's are appened
to the dividend
(flush bits)

This digit must always be 0

Modulo 2 division 
replaces addition
in BCC calculation

You do not need to reproduce this long division in an exam!You do not need to reproduce this long division in an exam!
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Example simplified to generate a short (4 bit) CRC

               1 0
   1 1 1 0 0 1 0 1  0 0 0 0
⊕  1 1 0 0 1
   0|0 1 0 1 1
     ⊕  0 0 0 0 0
      0|1 0 1 1
  

 

11001  )
¨

1 Bring next digit of dividend down
2 Copy msb of value to quotient
3 Insert 0 (if quotient 0) or divisor (if quotient 1)
4 Calculate XOR sum
5 Discard msb of value (always 0)

You do not need to reproduce this long division in an exam!
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 The CRC  Value
               1 0 1 1  0 1 0 0
   1 1 1 0 0 1 0 1  0 0 0 0
⊕  1 1 0 0 1
   0|0 1 0 1 1
     ⊕  0 0 0 0 0
      0|1 0 1 1 0
      ⊕  1 1 0 0 1
         0|1 1 1 1 1
         ⊕  1 1 0 0 1
           0|0 1 1 0   0
            ⊕  0 0 0 0   0
              0|1 1 0   0 0
              ⊕  1 1 0   0 1
                 0|0 0   0 1 0

            ⊕  0 0   0 0 0
                    0|0   0 1 0 0
                                  ⊕  0   0 0 0 0
                       0|  0 1 0 0

11001  )

CRC value = Remainder

You do not need to reproduce this long division in an exam!
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CRC Value when there was an Error
               1 0 1 1  0 1 1 1
   1 1 1 0 0 1 1 1  0 0 0 0
⊕  1 1 0 0 1
   0|0 1 0 1 1
     ⊕  0 0 0 0 0
      0|1 0 1 1 1
      ⊕  1 1 0 0 1
         0|1 1 1 0 1
         ⊕  1 1 0 0 1
           0|0 1 0 0   0
            ⊕   0 0 0 0   0
              0|1 0 0   0 0
              ⊕  1 1 0   0 1
                 0|1 0   0 1 0

            ⊕  1 1   0 0 1
                    0|1   0 1 1 0
                                  ⊕  1   1 0 0 1
                       0|  1 1 1 1

11001  )

CRC value = Remainder

Received CRC
replace by 0's

Bit error in frame

0 1 0 0

Received CRC
≠

Calculated CRC
⇒ ERROR !!!!!

You do not need to reproduce this long division in an exam!
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Hardware Example: CRC-15

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0 

A CRC-15 requires a 15-stage shift register and X-OR gates 

Clock each input bit  

Then “flush” the shift register by input of 15 0’s. 

XORXORXOR XOR XOR

4

XOR

1

91115

XORXOR

58

input

output
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CRC-15 properties

x0  Is a parity bit that detects all odd numbers of errors 

Consider this  CRC-15: 

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0 

The final code has a Hamming Distance of six 

This means that five randomly distributed bit failures are detectable.  

The probability of undetected multiple bit-errors is very low 

103

CRC-15 and CAN
Many systems detect errors using a CRC to and discard corrupted frames. 

x15 + x14 + x10 + x8 + x7 +x4 +x3 + x0 

The CAN bus uses the CRC to verify each message 

Each message where the received and calculated CRCs do not match 

causes the CAN receiver to send an Error Frame 

HOWEVER although the  code has a Hamming Distance of six it is less 
strong than it seems when used with CAN! 
Corruption of a single stuffing bit leads to shifting of the data, effectively 

inducing a 0.5 error rate, which reduces the power of CRC-15!! 

Still, good enough for most applications.
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Comparison of Integrity Checking Methods

Longitudinal 
Parity Checksum CRC

Example NMEA GPS DMX SIP Frames CAN, USB

Hardware 
Imnplementation

1 XOR gate per 
bit Adder per byte XOR gates and 

shift register

Software
Implementation

XOR instruction 
+ register

Add instruction 
+ register

maths, lookup 
table + register

Detection of
multiple errors Poor Better Good
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CAN-FLEXIBLE DATA (FD)

CAN-FD adds new formats 

• Extends frame size up to 64B of data

• Increases transmission speed of data
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CAN-FD HIGH RATE
[ISO 11898-1 and ISO 16845-1]

Classical CAN frame with 8 B of data

CAN-FD with 8 B of data

|8| www.kvaser.com

Comparing CAN FD with Classical CAN

Kent Lennartsson

Figure 3, same as figure 2, but also with a CAN FD frame with bit-rate increased 8 times.

From figure 4, it can be see that more data will make CAN-frames longer in time, which will 
prevent other high priority CAN-frames from starting to send. To keep the real-time performance 
it is necessary to increase bit-rate in order to reduce the length of the CAN-frame, as well as 
reduce the time the CAN frame occupies the communication line and prevents other high priority 
frames from accessing the communication.

Figure 4, on top a Classical CAN frame with 8 bytes and in the middle a CAN FD frame with 64 
byte with the same bit-rate. In bottom a CAN FD frame with 64 byte, but with bit-rate increased 

8 times.

In conclusion, CAN FD with high bit-rate will increase real-time performance, because the higher 
bit-rate makes the CAN-frames shorter in time, reducing latency in the communication. By sending 
more data in each frame it is possible to increase the data throughput, but this will lower the real-
time performance if not combined with the use of higher bit-rate. In many cases, long CAN frames 
with 64 bytes will be used during programming, which is normally done when a system is on pause 
and there are no real time controls running. Even without real-time demand, it is still of interest to 
use the higher bit-rate to increase data throughput and by that, reduce the download time.

Classical CAN frame CAN-FD on same scale with 64B of data

CAN-FD with 64B of data at x8 rate
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CAN-FD LARGE FRAMES

CAN-FD with 64B of data at x8 rate

Higher baud rate results in lower Eb/No 
- and hence more stringent cabling/transceiver design
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CAN SUMMARY
High speed control bus 

• Supports multiple senders with arbitration

• Supports real-time applications

Low cost chips and cable

• High Reliability

• Plug and Play operation

Extensible

• CANopen extends CAN for other applications

• CAN-FD increases data rate to ~ 5-8 Mbps
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COMPARE DMX & CAN
CAN DMX RDM

PHY RS-485 Async RS-485 Async

Cable 120R STP 120R STP

Direction Simplex HDX

Levels A inverse of B A inverse of B

Inter-Byte Gap Idle Idle

Senders 1 Any with Master

Frame SFD 92 µS Break 92 µS Break

Frame Data Size 1-512B 1-512B

Frame EOF Idle Idle
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COMPARE DMX & CAN
CAN DMX RDM

PHY RS-485 Sync RS-485 Async RS-485 Async

Cable 120R STP 120R STP 120R STP

Direction HDX Simplex HDX

Levels 2.5V for 1
1.5, 3.5 for 0

A inverse of B A inverse of B

Inter-Byte Gap No Idle Idle

Senders Any 1 Any with Master

Frame SFD 0 92 µS Break 92 µS Break

Frame Data Size 0-8B 1-512B 1-512B

Frame EOF 111 1111 Idle Idle
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USB

Not 2018
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UNIVERSAL SERIAL BUS
• About 10,000,000,000 USB ports in use

• USB 1.1 (1996)

• Low-speed devices (1.5 Mbps)

• Full-speed devices (12 Mbps)

• USB 2.0

• High-speed devices Up to 480 Mbps 

• Uses same connectors, Speed negotiated device-by-device

• USB 3 

• Up to about 4 Gbps
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USB

• ≤ 127 devices per controller

• Interface:  

• +Data (3), -Data (2) - twisted pair, 90 Ohm 

• Ground (4) 

• +5V Power (1), 500mA (USB2), 900mA (UBS3)
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USB SIGNALING

• Uses two line NRZI levels:

• J signaled by 0-0.3V; K signaled by 2.8-3.6V

• Differential: 0 is signaled by a change in J-K or vice 
versa

1 0 1 1 0 0 1 0

J K K K J K K J
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USB FRAMES

• Data formatted in frames

• Controller determines which device transmits

• Each frame starts with an all ‘0’  Sync Field 

• (8bits low speed, 32 bits high speed)

• Frame has a packet ID

• Includes a CRC-16

• End of packet (EOP_ signaled by 2-bit exception sequence

SYNC PID DATA CRC EOP
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BIT STUFFING
• 0-bit insertion (stuffing) used after 6 1’s

• Needed to allow any bit sequence within a frame.

• More efficient than using start/stop bauds for bytes!

• Sender physical layer monitors transmission

• Automatically injects a 0 after 6 1’s

• Receiver physical layer monitors reception

• Automatically removes a bit after 6 1’s

• If the removed bit is NOT a ‘0’ then the receiver has 
detected an error condition.
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BIT STUFFING

• `

A zero is inserted after every six consecutive 1s
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USB (BIT STUFFING)

1) What is the maximum and minimum overhead when using 
bit stuffing?

2) Determine the sequence of bits when the following data 
pattern is received over a USB cable: 0111111110100000 

3) Explain the implication of bit-errors (inversion) on a stream 
that uses bit-stuffing. How may the problem that arises be 
detected?
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