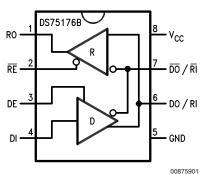
N**ational** Semiconductor

DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers General Description Features


The DS75176B is a high speed differential TRI-STATE® bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission. In addition, it is compatible with RS-422.

The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12V to -7V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

DC specifications are guaranteed over the 0 to 70 $^\circ\text{C}$ temperature and 4.75V to 5.25V supply voltage range.

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422.
- Small Outline (SO) Package option available for minimum board space.
- 22 ns driver propagation delays.
 Single (5) (sumplue)
- Single +5V supply.
- -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus.
- Thermal shutdown protection.
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down.
- Pin out compatible with DS3695/A and SN75176A/B.
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus.
- 70 mV typical receiver hysteresis.

Connection and Logic Diagram

Top View Order Number DS75176BN, DS75176BTN, DS75176BM or DS75176BTM See NS Package Number N08E or M08A

TRI-STATE® is a registered trademark of National Semiconductor Corp.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Control Input Voltages7VDriver Input Voltage7V
Driver Input Voltage 7V
Driver Output Voltages +15V/ -10V
Receiver Input Voltages (DS75176B) +15V/ -10V
Receiver Output Voltage 5.5V
Continuous Power Dissipation @
25°C
for M Package 675 mW (Note 5)
for N Package 900 mW (Note 4)
Storage Temperature Range -65°C to +150°C
Lead Temperature
(Soldering, 4 seconds) 260°C

ESD Rating (HBM)

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Voltage at Any Bus Terminal	-7	+12	V
(Separate or Common Mode)			
Operating Free Air Temperature T_A			
DS75176B	0	+70	°C
DS75176BT	-40	+85	°C
Differential Input Voltage,			
VID (Note 6)	-12	+12	V

Electrical Characteristics (Notes 2, 3)

 $0^{\circ}C \le T_{A} \le 70^{\circ}C$, 4.75V < V_{CC}< 5.25V unless otherwise specified

Symbol	Parame	ter	Conditions		Min	Тур	Max	Units
V _{OD1}	Differential Driver Output		$I_{O} = 0$				5	V
	Voltage (Unloaded)							
V _{OD2}	Differential Driver Outp	ut	(Figure 1)	R = 50Ω; (RS-422) (Note 7)	2			V
	Voltage (with Load)			R = 27Ω; (RS-485)	1.5			V
ΔV_{OD}	Change in Magnitude of Driver							
	Differential Output Voltage For						0.2	V
	Complementary Output States							
V _{oc}	Driver Common Mode	Output	(Figure 1)	R = 27Ω			3.0	V
	Voltage							
	Change in Magnitude of	of Driver						
	Common Mode Output Voltage						0.2	V
	For Complementary Output							
	States							
V _{IH}	Input High Voltage				2			V
V _{IL}	Input Low Voltage		DI, DE,				0.8	
V _{CL}	Input Clamp Voltage		RE, E	I _{IN} = -18 mA			-1.5	
I _{IL}	Input Low Current			$V_{IL} = 0.4V$			-200	μA
I _{IH}	Input High Current		$V_{IH} = 2.4V$				20	μA
I _{IN}	Input	DO/RI, DO/RI	$V_{\rm CC} = 0V \text{ or } 5.25V$	V _{IN} = 12V			+1.0	mA
	Current		DE = 0V	$V_{IN} = -7V$			-0.8	mA
V_{TH}	Differential Input Threshold		$-7V \le V_{CM} \le + 12V$		-0.2		+0.2	V
	Voltage for Receiver							
ΔV_{TH}	Receiver Input Hystere	sis	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High	/oltage	I _{OH} = -400 μA		2.7			V
V _{OL}	Output Low Voltage	RO	I _{OL} = 16 mA (Note 7)				0.5	V
I _{OZR}	OFF-State (High Impedance) V _{CC} = Max		V _{CC} = Max				±20	μA
	Output Current at Rece	eiver	$0.4V \le V_{O} \le 2.4V$					
R _{IN}	Receiver Input Resista	nce	$-7V \le V_{CM} \le +12V$		12			kΩ
I _{cc}	Supply Current		No Load	Driver Outputs Enabled			55	mA
			(Note 7)	Driver Outputs Disabled			35	mA

500V

Electrical Characteristics (Notes 2, 3) (Continued)

 $0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \ 4.75V < V_{CC} < 5.25V$ unless otherwise specified

	A / 00					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OSD}	Driver Short-Circuit	$V_{O} = -7V$ (Note 7)			-250	mA
	Output Current	V _O = +12V (Note 7)			+250	mA
I _{OSR}	Receiver Short-Circuit	$V_{O} = 0V$	-15		-85	mA
	Output Current					

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

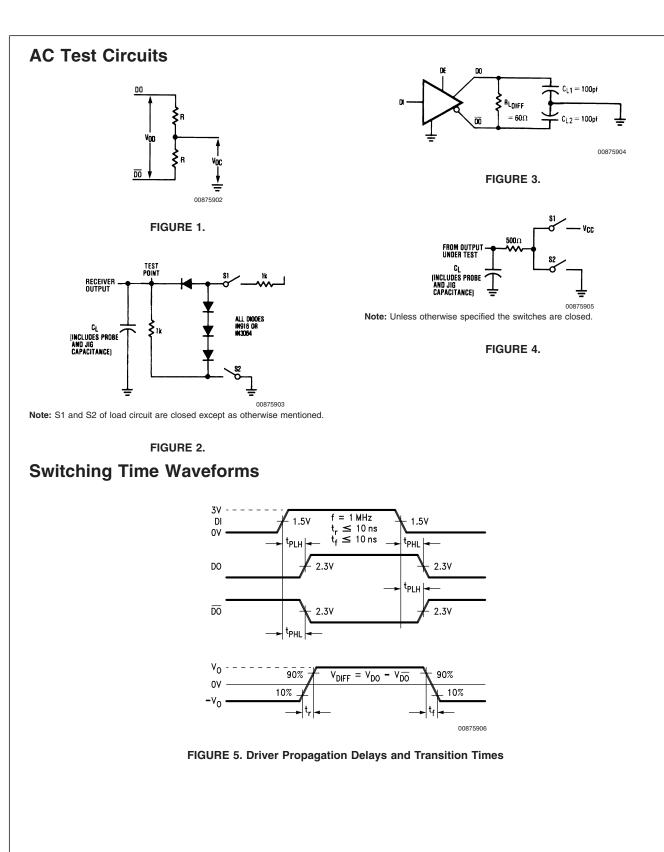
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

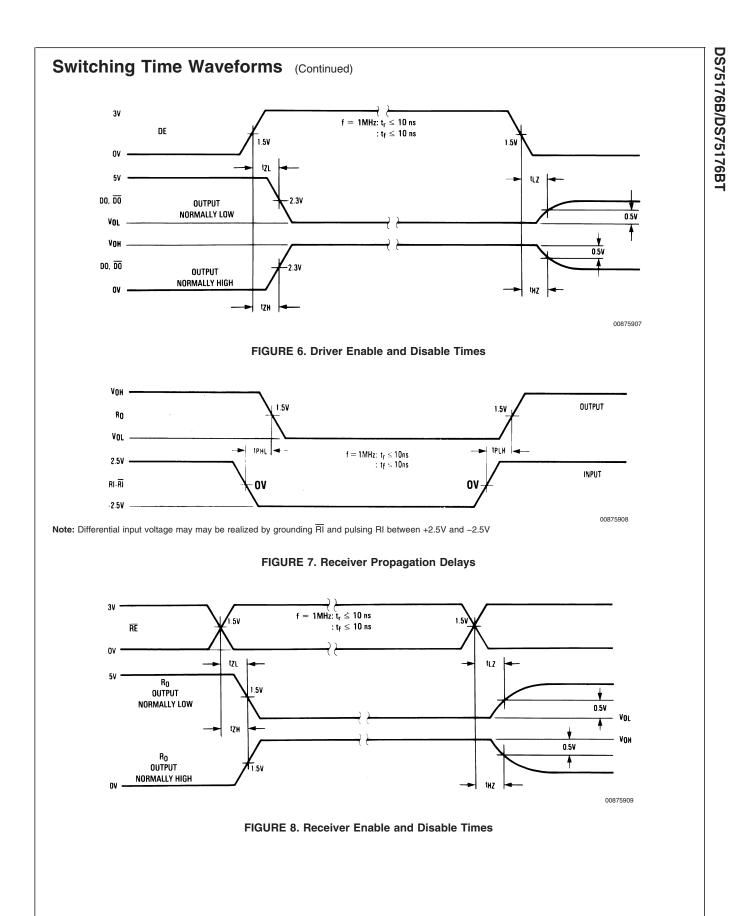
Note 3: All typicals are given for V_{CC} = 5V and T_A = 25 $^\circ C.$

Note 4: Derate linearly at 5.56 mW/°C to 650 mW at 70°C.

Note 5: Derate linearly @ 6.11 mW/°C to 400 mW at 70°C.

Note 6: Differential - Input/Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.


Note 7: All worst case parameters for which note 7 is applied, must be increased by 10% for DS75176BT. The other parameters remain valid for $-40^{\circ}C < T_A < +85^{\circ}C$.


Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Driver Input to Output	$R_{LDIFF} = 60\Omega$		12	22	ns
t _{PHL}	Driver Input to Output	$C_{L1} = C_{L2} = 100 \text{ pF}$		17	22	ns
t _r	Driver Rise Time	$R_{LDIFF} = 60\Omega$			18	ns
t _f	Driver Fall Time	$C_{L1} = C_{L2} = 100 \text{ pF}$			18	ns
		(Figure 3 and Figure 5)				
t _{zH}	Driver Enable to Output High	$C_L = 100 \text{ pF}$ (<i>Figure 4</i> and <i>Figure 6</i>) S1		29	100	ns
		Open				
t _{ZL}	Driver Enable to Output Low	$C_{L} = 100 \text{ pF}$ (<i>Figure 4</i> and <i>Figure 6</i>) S2		31	60	ns
		Open				
t_{LZ}	Driver Disable Time from Low	$C_{L} = 15 \text{ pF}$ (<i>Figure 4</i> and <i>Figure 6</i>) S2		13	30	ns
		Open				
t _{HZ}	Driver Disable Time from High	$C_L = 15 \text{ pF}$ (<i>Figure 4</i> and <i>Figure 6</i>) S1		19	200	ns
		Open				
t _{PLH}	Receiver Input to Output	$C_L = 15 \text{ pF}$ (<i>Figure 2</i> and <i>Figure 7</i>)		30	37	ns
t _{PHL}	Receiver Input to Output	S1 and S2 Closed		32	37	ns
t _{ZL}	Receiver Enable to Output Low	$C_L = 15 \text{ pF}$ (<i>Figure 2</i> and <i>Figure 8</i>) S2		15	20	ns
		Open				
t _{zH}	Receiver Enable to Output High	$C_L = 15 \text{ pF}$ (<i>Figure 2</i> and <i>Figure 8</i>) S1		11	20	ns
		Open				
t _{LZ}	Receiver Disable from Low	$C_L = 15 \text{ pF} (Figure 2 \text{ and } Figure 8) \text{ S2}$		28	32	ns
		Open				
t _{HZ}	Receiver Disable from High	$C_L = 15 \text{ pF} (Figure 2 \text{ and } Figure 8) \text{ S1}$		13	35	ns
		Open				

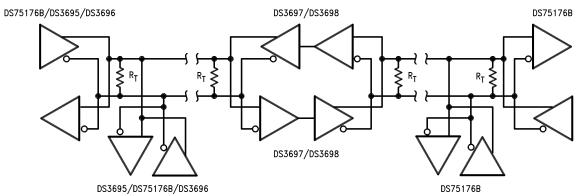
DS75176B/DS75176BT

www.national.com

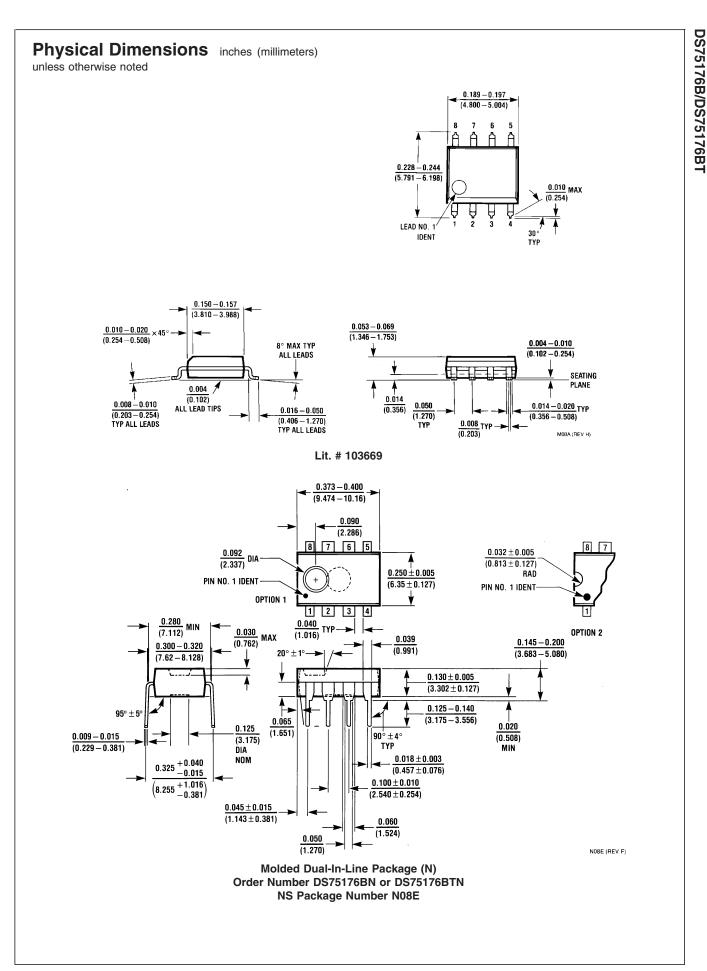
DS75176B/DS75176BT

Function Tables DS75176B Transmitting

Inputs		Line	Outputs		
RE	DE	DI	Condition	DO	DO
Х	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	Х	z	z
X	1	X	Fault	Z	Z


DS75176B Receiving

	Outputs		
RE	DE	RI-RI	RO
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs Open**	1
1	0	Х	Z


X — Don't care condition Z — High impedance state

Fault — Improper line conditons causing excessive power dissipation in the driver, such as shorts or bus contention situations **This is a fail safe condition

Typical Application

00875911

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +44 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.