
Changing QUIC
default to ACK 1:10

(Updating QUIC ACKs to avoid penalising asymmetric paths)
Gorry Fairhurst

Ana Custura

(University of Aberdeen)

Updating QUIC ACKs to avoid penalising asymmetric paths

Summary

The current QUIC transport specifies a default ACK Ratio of 1:2.

The baseline performance needs to be at least as good as for TCP

We propose and implemented a change to the default ACK
Ratio to be based on an ACK Ratio of 1:10.

This change means that QUIC will work significantly better
over many current Internet paths that have asymmetry.

This does not preclude implementations allowing a sender to use a
higher or lower ACK Ratio for a connection, or varying this to meet
the needs of a congestion-controller or capacity-probing technique.

Updating QUIC ACKs to avoid penalising asymmetric paths

Testbed
Endpoints:

Linux TCP

Quicly, draft revision 27

Chromium, draft revision 26,

PicoQUIC, draft revision 26.

FreeBSD router to emulate path delay of 600ms

When required, traffic shaping emulates a 1% packet loss for forward path

Experiments transferred 10MB of data on forward path, client to server

Network traces and logs collected and stored for analysis.

Updating QUIC ACKs to avoid penalising asymmetric paths

Why 1:10 for QUIC?

QUIC isn’t the same as TCP

QUIC does not rely on ACKs for ACK-Clocking

QUIC doesn’t block connection on packet loss

QUIC retransmissions can use the PTO (mostly)

However, still needs an RTT estimate … at least 1/4 RTT

See: issue #3529

Updating QUIC ACKs to avoid penalising asymmetric paths

Implementation Testing
ACK Decimation is already implemented and on by default in Chromium, since
February 2020.

The ACK Ratio starts as 1:2 and becomes 1:10 after 100 packets, bound by RTT.

quickly defined this as a constant (NUM_PACKETS_BEFORE_ACK=2), which we
changed to 10 for the experiments. Since the 10th of April, Quicly can update the
ACK frequency ratio using a transport frame - still only one line of code to change in
the code.

PicoQUIC already implements an algorithm for calculating ACK frequency ratio
locally.

Currently sets to 1:10 if the data rate is greater than 16Mbps and the RTT>100ms,
1:4 if the data rate is greater than 16Mbps and RTT<100ms, and 1:2 otherwise.

#define PICOQUIC_BANDWIDTH_MEDIUM 2000000 /* 16 Mbps, threshold for coalescing 10 packets per ACK */

Implementations need only small changes to set a new default ACK policy…

Updating QUIC ACKs to avoid penalising asymmetric paths

Experimental Scenarios

Case Download Path
(Mbps)

Upload Path*

(Mbps) Loss

Small public satellite
broadband access 10 2 None

Medium public satellite
broadband access 50 10 None

Loss-free Large public satellite
broadband access 250 3 None

Lossy Large public satellite
broadband access 250 3 1%

*Path characteristics under ideal “clear sky” conditions.

(e.g., deep fade will reduce by factor of 4-8)

Updating QUIC ACKs to avoid penalising asymmetric paths

Analysis of Return Traffic

Volume of ACKs measured for a 10MB transfer,

with and without link loss, emulated 600ms Path RTT.

Updating QUIC ACKs to avoid penalising asymmetric paths

ACK Ratio 1:10
Return Path ACK Traffic

ACKs/time measured for a 10MB transfer,

with no link loss, emulated 600ms Path RTT, using Chromium

Updating QUIC ACKs to avoid penalising asymmetric paths

ACK Ratio 1:10
Return Path ACK Traffic

ACKs/time measured for a 10MB transfer,

with no link loss, emulated 600ms Path RTT, using Quickly

Updating QUIC ACKs to avoid penalising asymmetric paths

ACK Ratio 1:10 did not significantly
impact performance

Congestion window measured for a 10MB transfer,

with no link loss, emulated 600ms Path RTT, using quicly

Updating QUIC ACKs to avoid penalising asymmetric paths

What is the impact of path RTT?

cwnd growth depends on receiving ACKs to know the cwnd was “safe”.

The final packets in each round of growth is “delayed” by ACK delay (more
significant when there is pacing?)

This was a motivation for DAASS in TCP, and applies also to QUIC

An ACK Ratio of 1:10 means more ACKs would be subject to this delay

We recommend keeping an ACK Ratio of 1:2 for the first 100 received packets.

Effect was not discernible for a RTT >> 25 ms (the default ACK_Delay).
The rule will have benefit for path with a lower RTT

Updating QUIC ACKs to avoid penalising asymmetric paths

ACK Ratio 1:10 did not significantly impact
performance for a path with a 20ms RTT

Se
co

nd
s

Time to download 10MB, emulated 20ms Path RTT, 8.5Mbps/1.5Mbps, n=6 transfers

Note: Chromium ACKs the first 100 packets, Quickly does not

Updating QUIC ACKs to avoid penalising asymmetric paths

10/2 Mbps 50/10 Mbps 250/3 Mbps

TCP - no loss * 133 - 346 kbps 650 -1,730 kbps 3,250 - 8,650 kbps

QUIC - 1:2 ACK
ratio no loss 144 -438 kbps 720 - 2,190 kbps 3,600 - 10,950 kbps

QUIC - 1:10 ACK
ratio no loss 28.8 - 87.6 kbps 144 - 438 kbps 720 - 2,190 kbps

* Rate generated at receiver, with no ACK-Thinning or PEP

Rate of ACK bytes required to fill the forward path.
Cases where just ACKs would consume full return capacity are highlighted in red

!13

Updating QUIC ACKs to avoid penalising asymmetric paths

QUIC Variability due to loss scenarios
(Chromium)

A FIFO bottleneck results in periodic loss with Reno or Cubic CC

ACKs grow (due to aCK Ranges) up to 900B in size

Updating QUIC ACKs to avoid penalising asymmetric paths

Proposed Method
Main proposed change:

Default ACK Ratio becomes 1:10

Condition 1: Maintain ACK 1:2 for first 100 received packets (DAASS)

Condition 2: Always ACK at least 4/RTT

Other Good practice:

Recommendation 1: Don’t over-size the ACK Range limit

Recommendation 2: Drop ACK Ranges promptly (e.g. Issue #3581)

Recommendation 2: Re-consider ACK each packet for 1/8 RTT after reordering

See: draft-fairhurst-quic-ack-scaling

Updating QUIC ACKs to avoid penalising asymmetric paths

• 1:10 is in line with IW, and pacing designed for at least this.

• Larger ACK ratios could be used for high transmission rates
where it can reduce processing at the endpoints

>1:10 needs to consider the CC, loss recovery - can’t just
use a large default without considering impact. Optimum
may also be impacted by the path.

A method defined to support adapting connections in
progress: draft-iyengar-quic-delayed-ack

What about a still higher ACK Ratios after
connection establishment?

Updating QUIC ACKs to avoid penalising asymmetric paths

Conclusion
• QUIC currently suffers performance penalties compared to TCP when

used over asymmetric paths because of the larger volume of ACKs.

• In-network TCP ACK Thinning does not help QUIC.

• Total ACK traffic on an asymmetric link can ~x5 larger (actual impact
depends on way TCP is enhanced and radio properties).

• QUIC transport needs a better default ACK Policy! (we recommend
1:10)

• QUIC connections can still adapt to allow a sender to use a higher or
lower ACK Ratio for a connection, or varying this to meet the needs of
a congestion-controller or capacity-probing technique

