IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

755

Robust Header Compression (ROHC) in
Next-Generation Network Processors

David E. Taylor, Member, IEEE, Andreas Herkersdorf, Member, IEEE, Andreas Doring, and Gero Dittmann

Abstract—Robust Header Compression (ROHC) provides for
more efficient use of radio links for wireless communication in a
packet switched network. Due to its potential advantages in the
wireless access area and the proliferation of network processors
in access infrastructure, there exists a need to understand the
resource requirements and architectural implications of imple-
menting ROHC in this environment. We present an analysis
of the primary functional blocks of ROHC and extract the ar-
chitectural implications on next-generation network processor
design for wireless access. The discussion focuses on memory
space and bandwidth dimensioning as well as processing resource
budgets. We conclude with an examination of resource consump-
tion and potential performance gains achievable by offloading
computationally intensive ROHC functions to application specific
hardware assists. We explore the design tradeoffs for hardware
assists in the form of reconfigurable hardware, Application-Spe-
cific Instruction-set Processors (ASIPs), and Application-Specific
Integrated Circuits (ASICs)

Index Terms—ASIC, ASIP, FPGA, hardware assist, header com-
pression, network processor, reconfigurable hardware, ROHC.

1. INTRODUCTION

EADER compression provides for more efficient use
of link bandwidth in a packet switched network by
leveraging header field redundancies in packets belonging to
the same flow. The key observation that many packet header
fields such as source and destination addresses remain constant
throughout the duration of a flow while other fields such as se-
quence numbers change predictably allows header compression
techniques to transmit only a few bytes of header information
per packet. Typically, reference copies of the full headers are
stored at the compression and decompression points in order to
reliably communicate and reconstruct original packet headers.
Particulars of packet header field classification into static and
dynamic sets depend upon the communication protocols and
encoding techniques employed by the compression scheme.
We provide a brief history of header compression techniques in
Section II.
Link efficiency comes at the cost of processing and memory
resources in the nodes communicating over the link. While this

Manuscript received October 9, 2002; revised November 4, 2003 and August
23, 2004; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
F. Neri.

D. E. Taylor is with the Applied Research Laboratory, Washington Uni-
versity in Saint Louis, and Exegy Inc., St. Louis, MO 63127 USA (e-mail:
dtaylor @exegy.com).

A. Herkersdorf is with the Institute of Integrated Systems, Technical Univer-
sity of Munich, D-80290 Germany (e-mail: a.herkersdorf @ei.tum.de).

A. Doring and G. Dittmann are with the IBM Zurich Research Labo-
ratory, CH-8803 Ruschlikon, Switzerland (e-mail: ado@zurich.ibm.com;
ged@zurich.ibm.com).

Digital Object Identifier 10.1109/TNET.2005.852887

may not be a favorable tradeoff in many environments such as
communication over optical fiber, it is particularly advantageous
for communication over radio links due to their high cost rela-
tive to the provided bandwidth [1]. Recently introduced as a new
standard by the IETF, Robust Header Compression (ROHC)
seeks to provide reliable header compression for efficient use
of links with high loss rates [2]. As an example of the potential
value of ROHC, consider a mobile handset transmitting voice
datagrams using IPv6/UDP/RTP as shown in Fig. 1. In order to
achieve a high perceived quality of response, voice datagrams
are typically on the order of 20 bytes while IPv6/UDP/RTP
headers are on the order of 100 bytes. ROHC achieves typical
header sizes of one to four bytes which could reduce the over-
head in our example by a factor of 100 and the total bandwidth
consumption by a factor of six.

Clearly, ROHC deployment for wireless networking requires
implementation at both ends of the radio link. While imple-
mentation in handsets, mobile terminals and “appliances” raises
many interesting issues, our discussion focuses on the use of
ROHC at access and aggregation nodes in wireless networks.
As shown in Fig. 2, Base Station Controllers (BSCs) which con-
centrate multiple links from Base Station Transceivers (BSTs)
in cellular networks are primary examples. Industry estimates
suggest that BSC link rates may soon reach 2.5 Gb/s, imposing a
uni-directional throughput constraint of over 7.8 million packets
per second for minimum size packets. For orthogonal ingress
and egress processing of our 120 byte voice datagram example,
the throughput constraint is over 5.2 million packets per second.
In order to understand the required resources of implementing
ROHC in this environment, we provide an analysis of the pri-
mary functional blocks employed by ROHC in Section IV.

Due to the need for programmability, flexibility, and rapid
deployment of new applications, services, and protocols at net-
work edges, access routers and aggregation nodes increasingly
employ network processors. Designed for high-speed packet
processing, network processor architectures seek to achieve
maximum flexibility while meeting the real-time throughput
constraints imposed by the supported link rates. As in most
systems, flexibility is provided via software programmable
processors, either General Purpose Processors (GPPs) or
processors with optimized instruction sets. Based on our
functional analysis, we extract architectural implications of
ROHC implementation on network processor design for the
wireless access environment in Section V. A key result is that
the processor memory interfaces should be dimensioned to
provide an aggregate bandwidth greater than eight times the
bandwidth of the supported link in order to support worst case
traffic patterns. This poses a challenge for processors designed

1063-6692/$20.00 © 2005 IEEE

756

Voice Datagrams w/

Voice Datagrams w/

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

Voice Datagrams w/

IPv6/UDP/RTP headers ROHC headers IPv6/UDP/RTP headers
[J_ 1 [ronc | 000 00 [ronc I I
| Compressor Radio Link Decompressor .

i

Reference HeaderY

]

A

Y Reference Header

]

Fig. 1. Example scenario of ROHC compression/decompression of IPv6/UDP/RTP headers for communication over a radio link.
144k — 2Mbps
622Mbps (4k+ flows)
‘ W ‘ | TRX \
/M NodeB \ TRX BSC

B[] s
5 ‘ NP H TRX
TRX

NodeB

144k — 2Mbps

microwave
leased copper

\

2.5Gbps (16k+ flows)
| e || TRX [-
2.5Gbps (16k+ flows)

TRX

622Mbps (4k+ flows)

Fig.2. Block diagram of 3G wireless access network. Link bandwidths are based on future capacity estimates for 3G wireless systems (WCDMA, EDGE, GSM).

to support high speed links or many aggregated links, such as
those targeted to the wireless access infrastructure. Based on
results from preliminary implementation efforts, ROHC may
easily saturate instruction per packet budgets in next generation
network processors [3]. In order to meet throughput constraints
and maximize the number of available software instructions per
packet, many network processors also contain optimized dat-
apaths and application-specific hardware assists for redundant
and computationally intensive tasks. While many processor
architectures include hardware assists for essential ROHC
functions such as packet classification and Cyclic Redundancy
Check (CRC) computations, there is no support for ROHC
encoding and decoding functions which comprise approxi-
mately one third of the per-packet workload. We envision that
this will change in the future; hence, we examine the resource
requirements and potential performance gains of implementing
ROHC encoding and decoding functions in application-spe-
cific hardware assists in the form of reconfigurable hardware,
Application-Specific Instruction set Processors (ASIPs), and
Application-Specific Integrated Circuits (ASICs) in Section VI.

Note that we assume a working knowledge of the IP and
UDP protocols. The aforementioned Real-time Transport Pro-
tocol (RTP) provides “end-to-end network transport functions
suitable for applications transmitting real-time data, such as
audio, video or simulation data, over multicast or unicast net-
work services” [4]. For the purpose of our discussion, it is only
important to note that each header contains a sequence number
(SN) and timestamp (TS) used for maintaining packet ordering
and calculating link jitter, respectively.

II. A BRIEF HISTORY OF HEADER COMPRESSION

The notion of header compression was introduced by
Jacobson in 1990 for the purpose of improving interactive ter-

minal response of low-speed serial modem links [5]. Nine years
later, Degermark, Nordgren, and Pink developed techniques
for compressing permutations of IPv4 headers, IPv6 base and
extension headers, TCP and UDP headers, and encapsulated
IPv4 and IPv6 headers for transmission over lossy links [6].
That same year Casner and Jacobson added a specification for
compressing IP/UDP/RTP headers commonly referred to as
CRTP [7].

Seeking to improve performance over lossy links with long
round-trip times (RTT), a group of researchers from Ericsson
and Lulea University proposed Robust Checksum-based Header
Compression (ROCCO) as an Internet Draft in June 1999 [8].
Coupled with transport and link layer protocols capable of par-
titioning checksum coverage into sensitive and insensitive re-
gions [9], ROCCO was designed to perform well with audio and
video codecs which tolerate bit errors in data frames. Studies
showed that ROCCO compressed headers to half of the size of
those provided by CRTP and remained robust over links with
BER rates an order of magnitude higher [10]. In July 2000, Er-
icsson and Japan Telecom successfully completed a field trial of
VoIP over WCDMA using ROCCO [11].

In July 2001, the Robust Header Compression (ROHC)
framework was presented as a new standard for header com-
pression by a working group of the IETF [2]. While designed
to be a general framework extensible to new protocol stacks,
much of the standard focuses on efficiency and robustness of
IP/UDP/RTP compression for wireless communication over
radio links. Several related standards have been proposed,
including a specification for completely removing headers of
IP/UDP/RTP packets, termed 0-byte compression, for use over
existing cellular links based on GSM and I1S-95 [12]-[14].
In May 2002, several companies participated in a successful
first trial of the major parts of the ROHC standard including
robustness tests over emulated WCDMA/3G links [11].

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 757

III. HEADER COMPRESSION WITH ROHC

The general approach of Robust Header Compression
(ROHC) is to establish a common context at the compressor
and decompressor by transmitting the full packet header, then
gradually transition to higher levels of compression via the
use of various encoding techniques and packet formats. ROHC
is designed to be a flexible header compression framework
capable of supporting several protocol stacks. General packet
formats, compressor and decompressor finite state machines,
modes of operation, error recovery and correction mechanisms,
and encoding methods are defined at the framework level. Each
supported protocol stack defines a “profile” within the ROHC
framework. Profiles fully specify the detailed packet formats,
state transition logic, and state actions as well as the encoding
methods used for each header field in the protocol stack.

The ROHC framework and profiles for RTP, UDP, ESP,
and uncompressed headers are defined in [2]. A specification
for running ROHC over the Point-to-Point Protocol (PPP),
commonly used for initialization and communication of control
information, is defined in [14]. As mentioned in the previous
section, a Link Layer Assisted (LLA) profile for IP/UDP/RTP,
which is capable of completely removing packet headers, is
defined in [13], [12].

For the purpose of our study, we focus on supporting the
general ROHC framework as well as the standard IP/UDP/RTP
compression profile. RTP/UPD/IP compression operates via the
following principle: establish functions from the RTP sequence
number (SN) to other fields, then reliably communicate the
SN. When functions change, parameters must be updated. The
following sections briefly describes the several aspects of the
ROHC framework and associated IP/UDP/RTP profile in order
to facilitate discussion of our functional analysis and archi-
tectural implications on next-generation network processor
design. Specifically, we delve into the details of field encoding
and decoding techniques in Section III.A as these comprise
one third of the processing workload; hence, our analysis of
application-specific hardware assists in Section VI focuses on
these functions. We refer the reader to our full technical report
[16] for a complete overview of ROHC.

A. Field Encoding Methods

The encoding method for dynamic fields in the packet headers
is selected based on the dynamic pattern of the specific field.
Hence, several encoding methods may be employed for the dy-
namic fields in a single packet header. Note that while the en-
coding methods are specified for the ROHC framework, several
of the methods are specific to IP/UDP/RTP headers.

1) Least Significant Bits (LSB) Encoding: LSB encoding is
applied to header fields subject to small changes. Quite simply,
the k least significant bits of the field are transmitted. The de-
compressor derives the original value using a reference value,
Vref, Which must include the untransmitted bits. Correctness is
guaranteed if the compressor and decompressor use interpreta-
tion intervals in which the original value resides and the trans-
mitted k£ LSBs are unique to the original value.

a) LSB Interpretation Interval Function: The LSB inter-
pretation interval may be expressed as a function:

f(vreﬁ k) = ['Uref — D, Uref + (2k -]-) - p] (1)

For any k, the £ LSBs must uniquely identify a value in
f(vre, k). p is a shifting parameter that may be tuned for
efficiency. For example:

* For increasing values, set p to —1

» For proportional shifting of the interval, p may become a

function of k; for example, to have % of the interval used
for positive changes set p to 2¥=2 — 1.
The compressor uses as v,.¢, the last compressed value pro-
tected by a CRC. The decompressor uses as vyf, the last decom-
pressed value verified by a CRC. k is selected as the minimum
value such that v falls in the interpretation interval f(vef, , k).
This selection function is referred to as g(vyet, , v).

2) Window-Based LSB (WLSB) Encoding: Window-based
LSB (WLSB) Encoding provides for robust LSB encoding
when the compressor is unable to determine the exact reference
value, vyef, , in use by the decompressor. The compressor main-
tains a sliding window of possible v,.f, values and calculates
k such that all v,e¢, candidates produce the correct v. Letting
Uref,, aNd Uret,,.,. be the lower and upper bounds of the sliding
window, respectively, then k is chosen as follows:

k = max (q (vr9f111iy1 ’ U) 29 (’Urefmax ’ /U)) (2)

The window is advanced based on positive acknowledgments
(ACKs) or the window width limit.

3) Scaled RTP Timestamp Encoding: Due to fixed sampling
periods employed in real-time applications such as audio and
video, the RTP Timestamp (TS) usually increases by an integral
of a fixed time interval. When such fixed intervals exist, TS may
be derived by the linear function:

TS = TS_.SCALED « TS_STRIDE + TS_.OFFSET (3)

where TS_STRIDE is the fixed time interval, TS_.SCALED is
the integral multiple, and TS_OFFSET is the linear offset.

TS_STRIDE is explicitly communicated from compressor
to decompressor. TS_OFFSET is implicitly communicated
by sending several uncompressed TS values from which the
decompressor can extract its value. Note that TS_OFFSET is
updated locally at TS wraparound via special interpretation
interval rules. Following initialization, only TS_SCALED is
communicated between compressor and decompressor via
WLSB encoding. Note that ROHC also defines a timer-based
encoding scheme for the RTP timestamp which we do not
address here.

4) IPv4 Identifier (IP-ID) Offset Encoding: Offset en-
coding assumes that the IP-ID increases for each outgoing
packet. Therefore, it is more efficient to encode the offset
relative to the RTP Sequence Number (RTPSN) where:

Offset = IPID — RTPSN @

For transmission, the offset is compressed and decompressed
using WLSB encoding with p = 0. Network byte order is syn-
chronized using the NBO or NBO2 flag in the header.

758

contexy

———={ channel,

|

context k

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

Timer

A
Y

Context

link, .
contexty :
—

o Buffer

Feedback

Context Processor

Memory
A

' | channel, : i
context; .

A

S Jrs

contexy

———={ channel,

Timestamp

-

Control A
Datapath Y

o -« CRC

'—-. . .
context,, : : * » Parser

oy

»| Header Field Output

Modification

contexiy link,,
™

channel ,

—_—
context;,
Fig. 3.

B. CRC

For initialization packets, ROHC employs an 8-bit CRC cov-
ering all packet fields, excluding the payload. For compressed
headers, ROHC calculates the CRC over all of the header fields
of the original packet. Header fields are split into two groups,
namely CRC-STATIC and CRC-DYNAMIC based on their fre-
quency of change between packets. The static portion of the
CRC is calculated over a list of the CRC-STATIC fields con-
catenated in the order in which they appear in the original packet
header, then stored with the context. The CRC calculation con-
tinues over the CRC-DYNAMIC fields concatenated in their
original order. The static portion of the CRC is only recomputed
when CRC-STATIC fields change. Note that the CRC is used to
detect bit errors incurred during transmission as well as invalid
context information caused by missed or incorrect context up-
dates; therefore, two CRC widths are used to ensure uniqueness
between CRC values for context updates.

IV. FUNCTIONAL ANALYSIS OF ROHC

In order to understand the architectural implications of im-
plementing ROHC in a network processor, we must analyze the
fundamental operations and interactions of the functional blocks
described in the ROHC specification. While there is inevitable
variance depending upon implementation decisions and envi-
ronments, a fundamental analysis provides valuable insight into
issues such as resource requirements and scalability. It is im-
portant to note that we do not address ROHC performance or
compression efficiency, and we attempt to keep our analysis as
implementation and traffic independent as possible. Given the
absence of open ROHC implementations and packet traces of
high bandwidth links with aggregated 3G traffic, we seek to es-
tablish useful bounds for network processor architects. To fa-
cilitate our discussion without significant loss of generality, we
present a logical block diagram of an ROHC Compressor/De-
compressor in Fig. 3.

As reflected in Fig. 3, a network processor may support sev-
eral links. Since there may be multiple channels per link and the
number of contexts and compression profile may be configured
on a per-channel basis in ROHC, the network processor must

Encoding/Decoding

L by
= Packet
’—>

Buffer

Logical block diagram of ROHC Compressor/Decompressor for IP/UDP/RTP compression.

provide a mechanism for identifying the link and channel of all
arriving and departing packets. As specified by ROHC, the net-
work processor must also provide the length of link layer frames
passed to the compressor/decompressor.

The Packet Modification Buffer is assumed to be a local or
dedicated memory space where packets may be temporarily
stored during compression and decompression. Context
Memory provides storage for all of the per-context information
such as state, mode, reference values, etc. The Feedback Buffers
allow “piggybacked” feedback to be stored and later retrieved
when the context addressed by the feedback is made active
via receipt of a packet or specific feedback processing. The
remaining blocks are discussed in more detail in the following
sub-sections.

A. Context Processor

The Context Processor may be viewed as implementing the
core of the ROHC framework. In essence, the Context Pro-
cessor coordinates packet parsing, context fetches and updates,
state and mode transitions, field encoding, and error checking
for each ROHC packet. While we assume the general struc-
ture and interfaces of the Context Processor remain constant
for all ROHC profiles, all packets are processed by three pro-
file-specific sub-blocks: a Packet Parser, a Compression or De-
compression Finite State Machine (CFSM/DFSM), and a Mode
Finite State Machine. Note that ROHC profiles are assigned on
a per-context basis; therefore, the processing performed by each
sub-block may change on a per-packet basis for a Context Pro-
cessor serving many channels.

1) Packet Parser: The Packet Parser may be viewed as a fi-
nite state machine capable of decoding the many permutations
of packet header formats. The minimal set of headers recognized
by the parser must include the base and extension headers of
the protocols supported by the ROHC profile as well as the pro-
file-specific packet headers. Based on a link and channel iden-
tifier, the parser may determine the direction and profile of the
packet; for example, ROHC compression for IP/UDP/RTP.

One of the primary functions of the Packet Parser is returning
the context identifier (CID) for the packet so that the context in-

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 759

formation may be retrieved from Context Memory. For packets
with compressed headers, the CID is contained in the ROHC
header. The Packet Parser must simply search for the bit-pattern
identifying the CID field. For uncompressed headers, the CID
must be assigned by a block capable of binding the packet to an
established ROHC flow or allocating a new CID for the flow.

The Packet Parser must also extract the header fields requiring
encoding or decoding. These fields are passed by the Context
Processor to the appropriate encoding or decoding block. When
the parser detects “piggybacked” feedback, the information is
stored in per-channel, per-context feedback buffers. Finally, the
Packet Parser must extract CRC values for error detection.

2) Compression/Decompression Finite State Machines
(CFSM/DFSM): Compression and Decompression Finite
State Machines (CFSM/DFSM) dictate the format of trans-
mitted packets and feedback. Coupled with the results of packet
parsing, field encoding/decoding, and CRC computations,
the mode of operation stored with the context information
determines state transitions and actions. We performed an
analysis to determine the amount of state information required
per-context by the CFSM/DFSM [16]. We conclude that the
CFSM/DFSM may be implemented as a single profile-specific
sub-block of the Context Processor. Each context must simply
store the current state and mode, along with the a small set of
parameters, totaling 20 bytes of context information.

3) Mode Finite State Machine (MFSM): We assume that a
mode variable is maintained for each context. The value of the
variable controls context attributes such as state actions and us-
able packet types. In many cases, the behavior of compressor or
decompressor is restricted during mode transitions.

B. Timer

The Timer block shown in Fig. 3 simply denotes the exis-
tence of a timing mechanisms available for maintaining timeout
timers while in Unidirectional Mode (U-Mode). At minimum,
the Context Processor must maintain per-context timeout values
relative to a free-running timer. When a packet arrives on a given
context, the Context Processor must detect if a timeout has oc-
curred for the context. Several design options exist for such a
mechanism and selection of the ideal approach largely depends
on the implementation platform.

C. Field Encoding & Decoding

Header field encoding and decoding are major consumers of
processing resources. We first present an analysis of the com-
putational requirements of the encoding schemes presented in
Section III.A. Memory resources required for encoding param-
eters are addressed in Section V.F. We performed an analysis
of the fundamental operations employed by each encoding and
decoding technique in the ROHC specification. We observe that
WLSB encoding and LSB decoding are used as building blocks
for several encoding techniques. Most encoding techniques con-
tribute only a few additional computations on top of those re-
quired for WLSB encoding or LSB decoding. In order to illus-
trate how a WLSB Encoder may be used as a functional compo-
nent, a block diagram of an RTPSN Encoder is shown in Fig. 4.
Note that shifting parameters are selected based on feedback

RTPSN .o min. ——
RTPSN yopmex =™
RTPSN — ™

Zzzk""—l B
9

Fig. 4. Block diagram of RTP Sequence Number (RTPSN) Encoder
employing WLSB Encoder block.

WLSB
Encode

y
=~

from the WLSB result. This ensures that as the width of the in-
terpretation interval grows beyond a threshold, it is proportion-
ally shifted to provide % of the interval for positive changes.
Complementary to the encoder, the shifting parameters for the
LSB Decoder are selected based on the number of bits received
in the ROHC header.

We also observe that the core operations, such as logarithms,
employed in LSB encoding are expensive to implement in
both software and hardware. Due to the potential usefulness
of WLSB Encoder and LSB Decoder blocks, the following
sub-sections discuss their design and efficient implementation.
We note that the structure of the functions allows for optimiza-
tions which eliminate the high cost of implementing the core
operations independently.

1) WLSB Encoder: As previously stated, WLSB encoding
chooses the minimum number of least significant bits of a value
to send such that the bits will uniquely identify the original value
given a set of likely reference values in use by the decompressor.
This task is formalized in (2). The LSB Selection Function em-
ployed by the WLSB encoder may be expressed as follows:

9 (Vret., v) =min (klver, —p < v < vpet, + 25 —1—p) (5)

Note that the shifting parameter p may take on values that are
functions of k, as specified in the previous examples. In order
to find a closed-form solution for &, a parameterized function
of p must be set. Based on the previous examples, the following
function is proposed.

b) Parameterizing the LSB Selection Function: Let p be
represented by the function:

p=ax2FCt_¢ (6)
with passed parameters a,b, and c. The following examples
show how p may be set:

e Forp=—-1,seta=0,b=0,c=1
e Forp=2F2_1seta=1b=2,c=1
Replacing p with the parameterized function, the selection func-
tion takes the form of the inequality shown in (7).
9 (Vref, , v) = min (k|/UrefC —a2Ft ¢
<v< g, +28—1—a28" 04+ ¢) (D)

Solving for k yields the inequality shown in (8).

. U — Uref —c+1
ret.» = k]“ s
3 (onge0) = min (K1 (2

§k§1g<v“‘f+v+c>+b> 8®)

760

Since k£ must be an integral number of bits, the inequalities and
min function may be eliminated as follows:

UV — Uper, —C+1
()]
Note that the WLSB Encoder performs this computation twice,
once with the minimum reference value and once with the
maximum reference value, selecting the maximum result. If the
value of k£ computed by the WLSB Encoder is smaller than the
minimum value allowed by the available packet format, then
the smallest available value of & is used.

c) Efficient Implementation: While (9) may easily be
specified in a high-level language for implementation in a
General-Purpose Processor (GPP), we continue our analysis
to investigate opportunities for optimized implementations.
We first note that the negative exponential in the denominator
may lead to the need for floating-point division if implemented
literally. Logarithms are also typically expensive to implement
in software due to the need for approximation arithmetic or
lookup tables. In an effort to avoid these expensive computa-
tions, we re-formulate the LSB Selection Function as follows:

k= [b+1g(|v_vrefc _C+1|)_1g(|2b_a’|)-| (10)

This fnnorm of the function eliminates the need for floating
point division and reduces the exponential to a simple Logic
Shift Left (LSL) operation. The need for an efficient mechanism
for computing the binary logarithms remains. Taking advantage
of the ceiling operation, the logarithms and remaining arithmetic
are efficiently computed using bit string searches.

Letx = |[v—ver, —c+1| and let y = |2° —al; (10) becomes:

k=[b+lgz —lgy] (11)

We can easily compute the integral part of the binary logarithms
by locating the bit-location of the most significant ‘1°. We refer
to the bits to the right of this bit-location as the fractional part.
A simple compare of the fractional parts of the logarithms de-
termines whether or not to add an additional bit to the value of &
found by adding b and the integral part of lg = minus the integral
part of lg y. To clarify, an example starting from (11) is shown
in Fig. 5.

2) LSB Decoder: As previously stated, the decompressor
derives the original value from the received LSBs using a
reference value, v.f,, and an interpretation interval. Let m
be the number of LSBs received by the compressor. Let ||
be the value of the received LSBs. The original value, v, is
determined to be the value in the interpretation interval whose
m LSBs are equal to |m|. Like the WLSB Encoder, the LSB
Decoder must employ the parameterized function of p. Hence,
the interpretation interval employed by the LSB decoder may
be expressed as follows:

f (Vrety, M) = [Vret, —a2™ 4, Vep, +2™ (1—a2” ") — 14|

(12)
Selecting the value within the interval matching the received
LSBs may be done in several ways. We focus on an efficient
computational implementation which avoids lookup tables or
multiple iterations.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

b=1 X y
Y
oJof1fof1]i]o]o] [0JoJoJo]1]ofo]1]
76543210 76543@&
Leftmost '1'

Fractional Part Fractional Part

8

Leftmost 'l l

k=4

Fig. 5. Example of LSB Selection Function computation via bit string
searches. Equation is of the form k& = [b+1gx — Igy].

d) Efficient Implementation: Let w be the left end-point
of the interpretation interval; therefore, w = Vper, — a2mb 4
c. Let |w|,, be the value of the m LSBs of w, which may be
expressed as:

|w]m = (w)modulo(2™) (13)

Let |w],—m, be the value of the n—m MSBs of w, where n is the
width in bits of w. This may be expressed as:

(14)

We note that the original value, v;, may be selected from the
interpretation interval expressed in (12) as follows:

If |m| > |w|m, then vg = (Jw|n—m + |m|); else vqg =
(lwln—m + 2™ + |m]).

While this may easily be specified in high-level GPP instruc-
tions, we also provide an example of an optimized solution using
bit-level optimizations as shown in Fig. 6.

D. CRC

ROHC requires support for CRC computations based
on three different polynomials. In the compressor, a CRC
checksum is generated from the original header and is trans-
mitted with the header depending on the compression mode. In
the decompressor, this checksum is compared to the checksum
of the restored header. The computation of CRC checksums
with generator polynomials of small degree (here 3, 7, and 8)
is comparatively simple. Furthermore, the checksums can be
computed on a consecutive sequence of input words. For this
type of task look-up based methods are preferred in software
implementations and can be used for hardware as well. For
a polynomial degree d and input width w bits per lookup,
table sizes of d x 2" bits result. For software implementations
utilizing standard memory widths, it is worth illustrating the
performance tradeoffs that arise when deciding how the table
entries for polynomial degrees of 3 or 7 bits may be efficiently
packed into memory words. For example, utilizing one memory
word per 3-bit entry simplifies table address generation but is

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 761

w
m=4
Y 7 N
jofo]tJo[1[t]oo] [1][o]o]1]lml=35
76543210 3210

(n — m) MSBs

ofofifrjtfofof1]

Fig. 6. Example of LSB Decoder operation, where w = v,.q¢ . a2™ "t +cis
the left end-point of the interpretation interval and m is the number of received
LSBs.

space inefficient. Concatenating 10 3-bit entries and storing
them in a single 32-bit word is space efficient but consumes
additional processing cycles for table address generation due to
the need for an integer divide and shifting operations to extract
the desired result from the resulting memory word. Hence, for
CRC computations with polynomials of such a small degree,
direct computation in software is worth considering. It consists
of a mask and parity computation for each output bit. On
a processor with a population count instruction, only a few
instructions are needed per output bit.

In hardware implementations, the choice of input width of the
computation dictates the size and depth of logic. Table I lists the
area and logic depth for computing the three polynomials in par-
allel for input widths of 8, 16, and 32 bits. FPGA area estimates
are explained in Section VI.A.1. Note that since the output size
is 3, 7, and 8 bits, respectively, the result of the CRC computa-
tion fits in one 32-bit word. Hence, all three checksums could
be implemented as an instruction set extension and comfortably
combined into a single instruction on a 32-bit processor. The in-
dividual results could be extracted by shift operations. The same
argument holds for a strongly-tailored ASIP implementation.

V. ARCHITECTURAL IMPLICATIONS FOR NETWORK
PROCESSORS

Insertion of ROHC compression and decompression in the
packet processing path of a network processor presents sev-
eral architectural implications. Header compression logically
resides between the link layer, commonly called Layer 2, and the
network layer, commonly called Layer 3, in the protocol stack.
Inserting header compression and decompression in the ingress
and egress packet processing paths of a network processor re-
quires additional processing, memory, and interconnection re-
sources. It is our intention to establish bounds on the amount of
additional resources to serve as “engineering bands” for network
processor architects. For the purpose of our analysis, we employ

TABLE 1
AREA AND PROPAGATION DELAY FOR CRC CALCULATION. ASIC RESULTS
BASED ON AREA OPTIMIZED SYNTHESIS TARGETING IBM Cu-11 PROCESS
ASSUMING WORST-CASE DELAYS. FPGA RESULTS BASED ON SYNTHESIS
WITH SYNPLICITY SYNPLIFY PRO TARGETING A XILINX VIRTEX-E (—8)
DEVICE USING WORST-CASE DELAY ESTIMATES. FPGA AREA ESTIMATES
ASSUME 423 LUT/FF PAIRS PER mm?.

FSM Mode Transition | Parameter(s) Est.
Size
DFSM | All Modes | FC—SC ny, ki, wing 4B
All Modes | SC—=NC ny, ko, wing 4B
CFSM | U-Mode IR—FO Nstats COUNEstat | 2 B
U-Mode FO—SO Ngyn, cOunty,, | 2B
U-Mode IR—SO Ngd, cOUNt oq 2B
U/O-Mode | SO—IR timeouty 2B
U/O-Mode | SO—FO | timeouts 2B
U/O-Mode | FO—IR timeoutsy 2B
Total 20B
Control
I—face
Processor
Interconnect
[—— | -
DRAM | | SRAM . ROHC
Bridge :
I-face [—face Assist
|F ast—Path Interconnect :
L1 | | 1
SAR Queue & | | CRC | | Header | | Classify
5 Schedule Parse & Route
TI
Physical Links
Fig. 7. Block diagram of a generic network processor architecture utilizing

hardware assists and hierarchical interconnection.

a generic network processor architecture utilizing hardware as-
sists and hierarchical interconnection as shown in Fig. 7. Note
that Fig. 7 includes an ROHC Assist hardware assist block. We
motivate the need for this block and analyze the performance
and resource tradeoffs in Section VI.

A. Functional Placement

A logic block diagram of the ingress datapath of a network
processor supporting ROHC is shown in Fig. 8. Note that
following frame reassembly, packets containing compressed
headers must be passed to the ROHC Decompressor with an
identifier specifying the arrival link and channel as well as
the frame length. Header decompression must precede Route
Lookup & Classification, as the fields used for packet classifi-
cation are contained in the original packet header. The network
processor must support some form of Internal Packet Route
(IPR) function capable of recognizing compressed headers
and routing the packets to the ROHC Decompressor prior to
classification. This could pose a problem for architectures that
implement fixed datapaths between the Frame Reassembly and
the Route Lookup & Classification blocks in order to maximize
throughput for typical network traffic.

762 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005
; T Fast Path - Switch
Link I Frame 1 | Classification & > Queumig &7 o
Reassembly ™| P ROHC —=|Route Lookup 1L [Packet | ™ Scheduling
R Decompress Processing
Fig. 8. Logical block diagram of ingress data path including ROHC decompression.
Link Frame - | (S,Qulfu(inig & |- Fast Path Classification &| Swifch
- . ~*—1 Segmentation P chedulin Route Look -
EMENtAtion|="1_rroHC R E™L [Packet |- B up
Compress Processing

Fig. 9. Logical block diagram of egress data path including ROHC compression.

In order to transmit packets with compressed headers,
the network processor must be able to instantiate an ROHC
Compressor prior to Frame Segmentation as shown in Fig. 9.
As previously mentioned, this requires that an IPR have the
ability to identify and pass packets requiring header compres-
sion to the ROHC Compressor along with the outgoing link,
channel and Context Identifier (CID). Placement of the ROHC
Compressor relative to Queuing & Scheduling depends on a
number of factors such as the ROHC implementation platform
and scheduling algorithms. The following sub-sections discuss
the influences and requirements ROHC places on the various
components of network processor architecture, beginning with
the packet parsing and classification.

B. Frame Reassembly & Packet Parsing

As previously mentioned, high-performance network proces-
sors often employ some form of “fast path” in which packets re-
quiring “normal” processing are handled by optimized blocks,
bypassing general purpose processing engines. One of the most
fundamental and common tasks handled in a “fast path” is link
layer frame segmentation and reassembly. ROHC defines a seg-
mentation and reassembly protocol which may require modi-
fications to fixed Frame Segmentation & Reassembly blocks.
Note that the protocol is only used when a packet is larger than
the largest size supported by the link layer; therefore, its use in
many environments is obsolete.

In order to offload the packet classification and route lookup
functions, the “fast path” must include some form of header
parser which extracts the required header fields. This func-
tionality may be contained in the Frame Segmentation &
Reassembly block or implemented as a separate component.
In order to leverage “fast path” components for ROHC func-
tionality such as flow classification and CRC computations, the
header parser must recognize a new class of header formats
defined by each ROHC profile. This suggests that a pro-
grammable header parsing block, similar to the one described
in [15], would be a favorable architectural feature of a network
processor supporting ROHC.

C. Packet Classification

Within the context of ROHC, a flow refers to a sequence of
packets that demonstrate the necessary redundancy in static
fields as defined by the ROHC profile. In order to bind an
uncompressed packet to an ROHC flow, the static fields of
the packet headers must be compared against the set of es-
tablished flows. This is precisely the function performed by

packet classifiers which typically search filter tables used for
network management and firewalls. Most packet classifiers are
capable of performing filter matches on header fields such as
the IP source and destination addresses, transport protocol, and
transport source and destination ports. For ROHC compression
of IPv6/UDP/RTP and IPv4/UDP/RTP, the fields that must be
examined in order to identify a flow are reported in [2]. The
total search key sizes for IPv4 and IPv6 headers are 140 bits
and 352 bits, respectively. Note that if the IPv6 Flow Label is
used (non-zero) the number of bits to be examined could be as
low as 20 bits.

At minimum, ROHC requires that the packet classification
block support exact match lookups using search keys with con-
figurable widths. This type of search may be efficiently im-
plementing using hashing techniques; however, it is likely that
more elaborate algorithms will be employed in packet classifiers
employed by next-generation network processors. For high-per-
formance packet classifiers, many network processor platforms
make use of Ternary Content Addressable Memory (TCAM) or
ASICs implementing proprietary algorithms. We note that the
case of binding an IPv6/UDP/RTP header to an ROHC flow
could pose a problem for such implementations, as the required
352 bit search key is wider than the maximum width provided
by commercially available classifiers.

Ideally, entries in the classification table would contain the
CID of the ROHC flow to be compressed. This implies that up-
dates be generated by a block responsible for managing the CID
space of each channel. Since there is no explicit flow termina-
tion signal in current packet switched networks, a suitable con-
trol block must manage the CID space of each channel. This
control block could be integrated with the filter and route data-
base manager of the packet classifier. At minimum, the control
block must implement a CID allocation algorithm such as Least
Recently Used (LRU), manage a set of connection timers, and
generate appropriate feedback such as the “REJECT” feedback
message used to inform a compressor that no compression con-
text is available for a new flow.

D. Timestamping

A mechanism for assigning an arrival time to ingress packets
is required in order to support timer-based RTP Timestamp en-
coding. Ideally, each packet should be stamped at the transmis-
sion interface, immediately following reassembly, and prior to
any pre-decompression buffering. The arrival timestamp may
be carried in an internal header, or shim, and passed to the de-
compressor along with the packet. Non-deterministic buffering

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 763

delays prior to decompression should be kept to less than a
few microseconds. RTP Timestamps are usually on the order
of milliseconds; therefore, such small buffer delays should not
make contributions to the jitter calculations performed during
timer-based RTP Timestamp decoding.

E. Scheduling & Queuing

An in-depth discussion of the affects of ROHC on scheduling
and queuing mechanisms in next-generation network proces-
sors in large wireless network aggregation nodes is beyond the
scope of our discussion. However, we would like to enumerate
a few peculiarities in the ROHC standard which imply that fur-
ther study on this topic would be beneficial.

1) Non-deterministic processing time due to radio link prop-
erties and application behavior

2) Change of total packet length

3) Decompressor creates packets in reverse direction for
acknowledgments in a bi-directional modes

4) Decompressor may create bursts of decompressed packets
when using “negative caching”

F. Memory Resources

All header compression schemes achieve transmission effi-
ciency by trading off memory resources. In essence, headers
are redundantly stored instead of transmitted. We examine the
amount of memory space and bandwidth required to support
ROHC in large aggregation nodes.

1) Space Requirements: Since the compressor must main-
tain multiple reference values for sliding windows, there
is a significant difference between the amount of memory
space utilized by an ROHC compressor and decompressor.
In IP/UDP/RTP compression, several fields require the com-
pressor to store multiple reference values in a sliding window
when WLSB encoding is used. In order to formulate an upper
bound on capacity estimates, we account for per-context
memory requirements of a compressor. The memory space
required for a reference header and encoding parameters for
ROHC compression of IPv4/UDP/RTP and IPv6/UDP/RTP
differ by only one byte. Assumptions guiding our choosing
sliding windows of width 10 and encoding parameter sizes are
provided in the technical report [16]. Using 244 bytes as the
upper bound for reference header and encoding parameters and
adding the 20 bytes for state machine transition parameters, 264
bytes seems to be a reasonable approximation for the per-con-
text memory requirements for ROHC compression. We also
performed this analysis for decompression and found that the
per-context memory requirements for ROHC decompression
of IPv4/UDP/RTP and IPv6/UDP/RTP are approximately 100
bytes less than that required for compression.

While the specific configuration of contexts per channel,
channels per link, and links per port will vary depending on the
application or access router configuration, we anticipate that
a single network processor may need to support thousands of
concurrent contexts. Based on our per-context estimates, total
memory requirements for context information exceeds 1 MB for
four thousand flows. This implies that off-chip SDRAM should
be used for context storage as on-chip memory resources are

Packet Processing

]

M Pkt Context Pkt 1
nterface by
(P+H) (P+H) Cc BCc (P+BH) (P+pH)

Fig. 10. First-order memory bandwidth usage model for ROHC compression
in the egress packet processing path of a network processor.

typically limited to a few kilobytes. While commodity SDRAM
products provide ample space for context information storage,
we examine the additional off-chip memory bandwidth required
to support ROHC.

2) Bandwidth Requirements: ROHC memory bandwidth
consumption will depend heavily upon implementation design
decisions and target platforms. Similarly, dimensioning of
memory interface bandwidth for network processors is difficult
due to the heterogeneity of applications. Processor architects
employ various “rules of thumb” in order to gain a first-order
approximation of the required memory bandwidth. For the
purpose of our analysis, we choose a conservative rule that
states the memory interface should provide four times the
bandwidth of the aggregate link rate. For example, a network
processor supporting an aggregate link throughput of 1 Gb/s
should employ a 4 Gb/s memory interface. This rule is based
upon the assumption that a packet must be written to memory
when received, read from memory for processing, written back
to memory after processing, and read from memory for trans-
mission for a total of four transits over the memory interface.
It should be noted that some processor architectures employ
register pipelines to avoid reading packets from memory for
processing. Any packet modifications are applied when the
packet is read from memory prior to transmission, resulting in
a total of two transits over the memory interface. Given that
the wireless access environment requires support for many
low-speed or aggregated links, we envision that the number
of processing engines in the network processor will be less
than the number of links. An architecture employing register
pipelines requires an additional packet memory between the
ports and pipelines as packets may arrive simultaneously on
each link. Since we seek to establish conservative bounds for
the additional memory bandwidth required for ROHC, we uti-
lize the single memory interface architecture for our analysis.

In order to gain a first-order approximation for the additional
memory bandwidth required for ROHC, we must first establish
some assumptions. Due to the large number of supported chan-
nels at an aggregation node in the network, we assume that con-
text information is stored off-chip. We also assume that ROHC
processing does not require additional reading and writing of
packet data, as ROHC processing may utilize an on-chip buffer
like the Packet Modification Buffer shown in Fig. 3. Based on
these assumptions, the only additional memory accesses gener-
ated by ROHC processing is for context fetches and updates.

As shown in Fig. 10, we assume that packet headers are com-
pressed by some factor /3 that ranges from zero to one. Initializa-
tion headers which contain the entire original header correspond
to § = 1, while contexts with high compression efficiency cor-
responds to 4 < 0.1. While all of the context information must

764

be fetched in order to decompress or compress a packet header,
only a portion of the context needs to be updated and written
back to memory. We make the first-order approximation that the
amount of context information written back to memory is pro-
portional to the compression factor (3. In general, small headers
require few updates of context information while larger headers
induce more context information updates.

Based on these assumptions, we find that context accesses
for ROHC compression contribute an additional (1 +) x C.
bytes per packet of memory bandwidth where C. is the size of
the compression context. Similarly, context accesses for ROHC
decompression contribute an additional (1 4+ 3) x C bytes per
packet of memory bandwidth where Cj is the size of the de-
compression context. As we seek to garner upper-bounds for
worst-case design, we will continue our analysis for the com-
pression case since C. was found to be 264 bytes in the pre-
vious section, approximately 100 bytes more than C;. Note that
the analysis for decompression is symmetric with only a change
in the value of the context size.

Letting H and P be the length in bytes of the packet header
and packet payload, respectively, we assume that packet storage
upon arrival and fetch prior to processing consumes 2 x (P+ H)
bytes per packet of memory bandwidth. Packet storage after pro-
cessing and header compression and packet fetch for transmis-
sion, requires 2 x (P + BH). Given a fixed link rate, R, ex-
pressed in bytes per second, the number of packets per second
equals P+LH' Thus, the amount of memory bandwidth required
for a system without ROHC processing is 4 X ha’e\# The ex-
pression for memory bandwidth requirements for ROHC com-
pression processing relative to link speed becomes:

264x(1+0) 2x(P+pH) bytes
MemBW = |2
em YT phyw P+ H sec
(15)

Note that the memory bandwidth scaling factor relative to the
link rate is now a function of the header size, payload size, and
(. A plot of the memory bandwidth scaling factor versus pay-
load size over the range of 3 values for ROHC compression of
IPv6/UDP/RTP headers is given in Fig. 11. Note that we as-
sumed a static uncompressed header size, H, of 100 bytes.
Supporting our previous example of 20 byte voice datagrams
with 100 byte IPv6/UDP/RTP headers would require a total
memory bandwidth of approximately 8.4 times the link rate,
more than double the bandwidth required for normal packet
processing. For a network processor supporting a bi-directional
2.5 Gb/s link or 5 Gb/s total throughput, this implies that the
memory interface be dimensioned for 42 Gb/s. Using a stan-
dard datapath width of 128 bits, this implies that the interface
must be operated at over 328 MHz for standard memory tech-
nologies or 164 MHz for Dual Data Rate (DDR) memory tech-
nologies [17], [18]. Note that we have assumed simplistic packet
handling and application of ROHC compression to 100% of the
link traffic. Our results imply that ROHC processing has a sig-
nificant cost in terms of off-chip memory bandwidth consump-
tion. As link speed increases continue to outpace memory tech-
nology improvements, optimized fast-path or header-only pro-
cessing techniques may become essential to meeting throughput

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

5 | ~

4 T T T T A AR A T A

10 20 170 250 330 410 490
Payload Length (bytes)

Memory BW Scaling (relative to link rate)
o

Fig. 11. Memory bandwidth scaling factor relative to supported link rate
versus packet payload size for ROHC compression of IPv6/UDP/RTP headers.
Assumes static uncompressed header size of 100 bytes.

constraints especially when supporting additional memory-in-
tensive applications.

VI. OFFLOADING ROHC FUNCTIONS TO
APPLICATION-SPECIFIC HARDWARE ASSISTS

Based on results from preliminary implementation efforts,
ROHC may easily saturate instruction per packet budgets in next
generation network processors [3]. In order to meet throughput
constraints and maximize the number of available software in-
structions per packet, many network processors also contain op-
timized datapaths and application-specific hardware assists for
redundant and computationally intensive tasks. In this section,
we consider several of the computationally intensive and re-
dundant tasks specific to ROHC as candidates for implemen-
tation as hardware assists. A significant portion of the imple-
mentation complexity of ROHC lies in the functionality and
interactions of the Compressor and Decompressor Finite State
Machines (CFSM/DFSM) and the Mode Finite State Machine
(MFSM) that establish the context information, encoding pa-
rameters, and packet formats. The software-programmable pro-
cessing engines in network processors are well-suited for such
tasks, suggesting a hardware-software co-design to achieve a fa-
vorable balance among flexibility and performance. In addition
to absolute processing times, the results reported in [3] also pro-
vide a breakdown of the amount of time consumed by various
steps in the compression process. Correlating these results to
the logical block diagram presented in Fig. 3, we make the fol-
lowing observations:

e Packet classification and context binding comprises ap-
proximately 14% of the workload

» Packet parsing comprises approximately one third of the
workload

* CRC computations comprise 14% to 20% of the workload

e Header field encoding and decoding comprises approxi-
mately one third of the workload

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 765

As previously discussed, the contributions due to packet
parsing, packet classification, and CRC computations may be
offloaded to existing hardware assists in current-generation
network processor platforms. Offloading the encoding and
decoding of header fields allows a majority of the ROHC
processing to be done in hardware assists. We begin our anal-
ysis of ROHC hardware assists by examining the achievable
performance and die area required for Header Field Codecs
in several implementation technologies with varying degrees
of flexibility. In order to evaluate the implications of a hard-
ware-software co-design, we continue with a discussion of the
interconnection bandwidth consumption and hardware-soft-
ware handovers in Section VI.B. Although we do not provide
an explicit analysis, we do believe that reconfigurable hardware
assists provide a viable high-performance option for the finite
state machines of the Context Processor if additional offloading
were required to achieve a specific performance target. As in
the previous sections, we focus our analysis on supporting
ROHC for IP/UDP/RTP headers.

A. Performance, Flexibility, & Size

In light of our previous analysis of ROHC header field en-
coding and decoding techniques, we now consider implemen-
tation options for a set of ROHC Header Field Codecs hard-
ware assists. Note that we consider two general codec designs:
generic codecs which require that the shifting parameters be
passed with the input values and field-specific codecs for each
header field which are optimized for the known shifting param-
eters and field width. Due to the nature of WLSB encoding, all
of the encoders may be designed in an iterative fashion which
seeks to maximize logic reuse and minimize area, or they may
designed in a pipelined fashion which computes all intermediate
results in parallel and allows a new set of fields to be issued
every clock cycle. We implemented the generic and field-spe-
cific encoders in both paradigms in order to effectively explore
the design space.

We note that given the current lack of insight into ROHC
behavior, flexibility is essential for initial implementations.
As more experience is garnered, less-flexible implementations
providing higher performance may become favorable in the
future. We consider three implementation options that represent
a likely migration path for ROHC hardware assists. Regarding
performance constraints, our analysis assumes a 2.5 Gb/s
bi-directional link; therefore, the hardware assists must provide
at least 2.6 million header encoding and decoding operations
per second. An operation refers to the complete encoding or
decoding of all the dynamic header fields of the packet. In
order for the generic codecs to meet the throughput constraint,
they must provide 7.8 million operations per second (Mops) as
they must operate on all three of the dynamic header fields in
the IP/UDP/RTP stack. For ease in comparison, performance
results are listed with millions of packets per second (Mpkts).

1) Reconfigurable Hardware Assists: We designed and
implemented several codecs in VHDL. The designs were then
synthesized targeting a Xilinx Virtex-E device. Achievable
clock frequencies are based on worst-case delay estimates in
a device with a —8 speed grade. Based on the figures claimed
in the Xilinx Virtex-E datasheet [19], a single LUT/FF pair

TABLE 11
RECONFIGURABLE HARDWARE RESOURCE USAGE AND PERFORMANCE
ESTIMATES FOR ROHC IP/UDP/RTP ENCODING METHODS. LUT/FF USAGE
AND CLOCK PERIOD ESTIMATES ACCORDING TO SYNTHESIS WITH SYNPLICITY
PRO TARGETING A XILINX VIRTEX-E (—8) DEVICE USING WORST-CASE
DELAY ESTIMATES. AREA ESTIMATES ASSUME 423 LUT/FF PAIRS PER mm?

ASIC FPGA
Width || Logic | Area Tp Area | Tp
(bits) Depth | mm? (ns) | LUTs | mm?2 | (ns)
8 3 0.0013 | 1.73 | 33 .078 | 2.15
16 4 0.002 1.79 | 57 135 | 3.03
32 4 0.0037 | 1.87 | 78 185 | 3.42

8
IPipeIined, Field-S pecific Encoders FJ
7 T T
|Pipe|ined, Generic Encoder
6 |

Iterative, Field-S pecific E ncoders |

|Fie|d-S pecific Decoders

Codec Area (mmA2)
=

K—éiG eﬁeric Decéder ‘

||terative, Generic Encoder |

0 T T T
0 20 40 60 80 100
Codec Throughput (Mpkt/s)
Fig. 12. Area versus throughput tradeoff for various ROHC header field codec

designs implemented as Reconfigurable Hardware Assists (RHAs) in embedded
FPGA technology.

translates to 13.5 equivalent ASIC gates. A recent announce-
ment by IBM and Xilinx claims that forthcoming embedded
Xilinx FPGA cores of 40 k equivalent gates will require 7 mm?
in the IBM Cu-08 process [20]. We therefore use the estimate
of 423 LUT/FF pairs per mm? for our area estimate. Our
implementation results are shown in Table II.

A fairly large degree of size and speed optimization is
achievable in FPGA technology via low-level description and
hand-placement of designs; however, our analysis focuses not
on determination of absolute performance, but extraction of
relative trends between codec designs. Fig. 12 illustrates the
throughput and area tradeoffs of employing different types of
codecs. In general, iterative and generic codec designs are more
area efficient while a set of field-specific and pipelined codec
designs provided better throughput. For our example case of
supporting 2.5 Gb/s links, we note that a combination of an
iterative, generic WLSB encoder and generic LSB Decoder
exceeds the necessary throughput of 2.6 million packets per
second with better area efficiency than use of field-specific
encoders.

For a network processor employing generic codecs or
supporting a single ROHC profile, reconfiguration may be

766

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

TABLE III
ASIC RESOURCE USAGE AND PERFORMANCE ESTIMATES FOR ROHC IP/UDP/RTP ENCODING METHODS. AREA AND CLOCK PERIOD ESTIMATES
ACCORDING TO SYNTHESIS TARGETING IBM Cu-11 PROCESS WITH WORST-CASE DELAY ESTIMATES

Block cycles/op | LUTs | FFs | Area | T Tput Tput
mm? | ns Mops Mpkts
Generic LSB Encoder (Pipelined) 1 1077 | 273 | 2.546 | 10.107 | 98.941 32.908
Generic LSB Encoder ([terative) 2 694 297 | 1.641 | 9.749 | 51.287 17.096
Generic WLSB Encoder (Pipelined) || | 2250 | 603 | 5.319 | 10.057 | 99.433 | 33.144
Generic WLSB Encoder ({terative) 4 714 417 | 1.688 | 9.77 25.589 8.530
IP-ID Encoder (Pipelined) 1 336 187 | 0.794 | 7.465 133.958 | 133.958
IP-ID Encoder (/ferative) 2 193 165 | 0.456 | 7.447 | 67.141 67.141
RTP SN Encoder (Pipelined) 1 559 221 | 1.322 | 7.547 132.503 | 132.503
RTP SN Encoder (/terative) 4 198 151 | 0.468 | 7.379 33.880 33.880
RTP Scaled TS Encoder (Pipelined) || 1 2279 | 590 | 5.388 | 10.181 | 98.222 | 98.222
RTP Scaled TS Encoder (/terative) 4 727 386 | 1.719 | 9.749 25.644 25.644
Generic LSB Decoder 1 647 210 | 1.530 | 19.036 | 52.532 17.511
[P-ID Decoder 1 188 166 | 0.444 | 12.203 | 81.947 | 81.947
RTP SN Decoder 1 248 155 | 0.586 | 12.082 | 82.768 | 82.768
RTP Scaled TS Decoder 1 621 200 | 1.468 | 19.407 | 51.528 | 51.528

relatively infrequent implying that manually triggered recon-
figuration of RHAs would be sufficient. However for network
processors supporting multiple ROHC profiles or higher
link rates requiring the use of profile-specific codec designs,
run-time reconfiguration mechanisms would be required in-
curring an additional hardware cost. We defer discussion of
such mechanisms at this time. Based on our preliminary im-
plementation results, we also predict that implementation of a
full ROHC Compressor/Decompressor as an RHA would likely
require more die area than available on-chip in the announced
embedded FPGA cores. As additional service applications such
as content filtering and transcoding are pushed to the network
edge, fully offloading ROHC processing may become desirable.
2) Application-Specific Instruction-Set Processors (ASIPs):
An ASIP is an alternative between GPPs and ASICs that
combines the required flexibility with efficiency by designing a
specialized processor core for a class of applications—in
our case header compression—such that it is software
programmable but its structure is optimized to speed up the
common case. Interfaces to the environment of the ASIP,
including memories, are tailored to the application class, and
processor infrastructure that does not considerably contribute
to processing performance is pruned off. This avoids logic that
is only rarely used but consumes area and power.

A significant improvement over a GPP stems from a special-
ized instruction set that speeds up frequently used code sections
and reduces program-memory requirements by implementing
common combinations of operations in hardware as extended
instructions. An example for an ASIP specialized in header
parsing for 10 Gb/s is given in [15]. The size of the parser, in-
cluding a small instruction memory, is in the order of 0.45 mm?
in a 0.18 pm-process which demonstrates the area efficiency of
the ASIP approach. Examples of methods for the derivation of
ASIP instruction sets from application representations can be
found in [22], [23].

An ASIP for header compression may employ instructions
of different complexity. Single instructions can implement
complete coding blocks, such as a WLSB encoder or an LSB
decoder, or they can be more basic functions such as a parame-
terized version of Fig. 5, that can be used to implement a variety
of codecs. Herein lies the tradeoff between efficiency, defined

as performance per area, and flexibility. In the ROHC case,
the instructions should represent the basic functions that make
up a compression profile. When new compression profiles are
specified they can be implemented with those basic ROHC
functions and added to the ROHC ASIP’s functionality. An
ASIP designed exclusively for ROHC may implement the static
framework around the profiles in a hard-wired fashion. This
solution combines the flexibility for new profiles with the most
efficient implementation of the framework.

3) Application-Specific Integrated Circuits (ASICs): As
the ROHC specification matures and becomes more stable,
flexibility may no longer be a necessity and performance may
become a higher priority. In such a case, Application-Specific
Integrated Circuits (ASICs) may be the preferred implemen-
tation technology for ROHC hardware assists as they provide
high-performance at low area cost for fixed functions. Results
from synthesis of select ROHC codecs targeting the IBM Cu-11
process with worst-case delay estimates are shown in Table II1.
Note that design tools for ASIC synthesis provide for a wide
range of optimization parameters. We provide results for both
area and speed optimized synthesis runs in order to illustrate
the spectrum of achievable results. Based on these results, a set
of generic codecs capable of performing 75 million encodes
and decodes per second would require less than 0.1 mm? of die
area.

B. Interconnection Architecture

Hardware assists reduce processor cycle consumption at the
cost of additional overhead for communication between pro-
cessor and hardware assists. It is our aim to derive a first-order
approximation of the additional interconnection bandwidth
required for software/hardware handovers for ROHC hardware
assists. This approximation will aid our discussion of inter-
connection architectures suitable for ROHC hardware assists,
including placement and coupling to the processor.

For the purpose of our analysis, we assume a generic pro-
cessor architecture as shown in Fig. 7 and that the following
steps contribute to interconnection bandwidth consumption:

1) Packet receive (TI/SAR to SDRAM interface): P + H

2) Packetload (SDRAM Interface to processor cache): P+H

3) Context load (SDRAM Interface to processor cache): C.

TAYLOR et al.: ROBUST HEADER COMPRESSION (ROHC) IN NEXT-GENERATION NETWORK PROCESSORS 767

1.0

Y
)

WLSB Encode

0.5

0.0 LI A I

10 90 170 250 330 410 490
Payload Length (bytes)

Fig. 13. Additional interconnect bandwidth requirement relative to supported
link rate versus packet payload size for ROHC compression of IPv6/UDP/RTP
headers with hardware assists. Assumes hardware assists implementing
CFSM/DFSM, MFSM, Generic WLSB Encoder, and CRC. Assumes static
uncompressed header size of 100 bytes and excludes contributions for packet
classification, frame CRC, and interconnect overheads such as arbitration and
addressing.

Interconnect BW Scaling (relative to link rate

4) Vector to hardware assists: HW A;

5) Return from hardware assists: HW A;

6) Context store (Processor cache to SDRAM interface):

pC.

7) Packet store (Processor cache to SDRAM interface): P+

BH

8) Packet transmit (SDRAM Interface to TI/SAR): P + GH
The quantities following each step refer to the amount of data
per packet which must transit the interconnect. Note that under
these assumptions, interconnection bandwidth usage is equal to
memory bandwidth usage when no hardware assists are em-
ployed. Clearly, these assumptions do not take into consider-
ation the overhead incurred for interconnect transactions. For
example, in high-performance bus-based interconnects several
cycles are consumed for arbitration and addressing. We assume
that such overheads may be accounted for by a general additive
constant.

The values of HW A;, the size of arguments passed to the
hardware assists, and HW A;, the size of results returned to the
processor, depend on the type of ROHC hardware assists em-
ployed in the system. We examine the case of ROHC encoding
employing a hardware assists for generic WLSB encoding, CRC
calculations, MFSM and CFSM state transitions. Based on our
previous assumptions, the total amount of information trans-
ferred, HW A; + HW A;, is approximately 85 bytes. Given that
the amount of data per packet passed between the processor and
hardware assists is a constant, the amount of additional inter-
connection bandwidth required for these transactions relative to
the supported link rate decreases with the packet size. A plot of
the additional interconnection bandwidth requirement relative
to the supported link rate versus packet payload size for ROHC
compression of IP/UDP/RTP headers with hardware assists is
shown in Fig. 13 with the contributions for each hardware assist
block indicated by a shaded region.

Relative to the interconnection bandwidth consumed by
packet and context load and stores, the additional amount
required for ROHC hardware assists is small. For our 20
byte voice datagram example an additional 0.7 x R% of
interconnection bandwidth is required. These results imply that
ROHC hardware assists may be loosely coupled to the packet
processor and utilize standard interfaces to on-chip intercon-
nect. If addressing and arbitration overheads are sufficiently
large, hierarchical interconnect may be used to eliminate the
contributions of hardware assist communication from the
FastPathilnterconnect as shown in Fig. 7.

VII. CONCLUSION

We have provided an overview of Robust Header Com-
pression (ROHC) and extracted the primary functional blocks
required for an ROHC Compressor/Decompressor. From this
analysis we examined the architectural implications imposed
by ROHC on network processors designed for use in wireless
access infrastructure such as Base Station Subsystems (BSS).
Based on reasonable assumptions regarding the probable en-
vironment of use we provided an estimate for the amount of
memory required to store context information. Assuming a
context size of 264 bytes per context and a network processor
supporting thousands of flows implies that off-chip memory
must be used for context storage. We then analyzed the required
memory bandwidth relative to the supported link rate and found
that for small payload sizes ROHC requires a memory interface
providing a bandwidth of up to nine times the link rate. This
is a significant result given standard industry practice of di-
mensioning network processor aggregate memory bandwidths
equal to the link rate or at most four times the link rate.

Based on initial implementation results and capacities of
existing network processors, we argue that ROHC imposes a
significant strain on processing resources. We then explored the
design space for application-specific hardware assists for ROHC
in the form of reconfigurable hardware, Application-Specific
Instruction-set Processors (ASIPs), and Application-Specific
Integrated Circuits (ASICs). We showed that the additional
interconnection bandwidth required for software/hardware han-
dovers is relatively small implying that hardware assists could
be loosely coupled to the packet processor and employ standard
interfaces to on-chip interconnect. We assert that supporting
ROHC in next-generation network processors targeted to large
aggregation nodes in wireless access networks requires con-
sideration at the architectural level. We also provide evidence
for continued incorporation of application-specific hardware
assists in high-performance network processor architectures.

ACKNOWLEDGMENT

The authors would like to thank M. West for his prompt
replies to their questions regarding his slides presented at the
ROHC Working Group meeting of the IETF. They also would
like to thank P. Buchmann for his assistance with CAD tool
flows for the ASIC hardware assists evaluation.

768

(1]
[2]

[3]

(4]
[3]
(6]
(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

REFERENCES

“Effnet: An Introduction to EffnetEdge Header Compression Tech-
nology,” Effnet Inc., Mountain View, CA, 2002.

C. Bormann et al., “RObust Header Compression (ROHC): Framework
and Four Profiles: RTP, UDP, ESP, and Uncompressed,” IETF Network
Working Group, RFC 3095, Jul. 2001.

M. West, “ROHC implementation experience,” presented at the ROHC
Working Group Meeting, 50th IETF Meeting, Minneapolis, MN, Mar.
2001.

H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time Appli-
cations,” IETF Network Working Group, RFC 1889, Jan. 1996.

V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial
Links,” IETF Network Working Group, RFC 1144, Feb. 1990.

M. Degermark, B. Nordgren, and S. Pink, “IP Header Compression,”
IETF Network Working Group, RFC 2507, Feb. 1999.

S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links,” IETF Network Working Group, RFC 2508,
Feb. 1999.

L.-E. Jonsson, M. Degermark, H. Hannu, and K. Svanbro, “RObust
checksum-based header compression (ROCCO),” IETF Network
Working Group, Internet Draft, Jun. 1999.

L.-A. Larzon, M. Degermark, and S. Pink, “Efficient Use of Wireless
Bandwidth for Multimedia Applications,” Lulea Univ. of Technology,
Lulea, Sweden, Tech. Rep., 2000.

L.-A. Larzon, H. Hannu, L.-E. Jonsson, and K. Svanbro, “Efficient trans-
port of Voice over IP over cellular links,” in Proc. IEEE Globecom, 2000,
pp- 1669-1676.

M. Thoren, “Ericsson Compression Technology Boosts 3G Network Ca-
pacity,” Ericsson Press Release, May 2002.

L.-E. Jonsson, “RObust Header Compression (ROHC): Requirements
and Assumptions for O-byte IP/UDP/RTP Compression,” IETF Network
Working Group, RFC 3243, Apr. 2002.

L.-E. Jonsson and G. Pelletier, “RObust Header Compression (ROHC):
A Link-Layer Assisted Profile for IP/UDP/RTP” IETF Network
Working Group, RFC 3242, Apr. 2002.

C. Bormann, “RObust Header Compression (ROHC) over PPP,” IETF
Network Working Group, RFC 3241, Apr. 2002.

G. Dittmann. (2000) Programmable Finite State Machines for
High-Speed Communication Components, Master’s Thesis. Darmstadt
Univ. of Technology. [Online]http://www.zurich.ibm.com/ged/Header-
Parser_Dittmann.pdf

D. E. Taylor, A. Herkersdorf, A. Doring, and G. Dittmann, “Robust
Header Compression (ROHC) in Next-Generation Network Processors,”
Dept. Computer Science and Engineering, Washington Univ., St. Louis,
MO, Tech. Rep. WUCSE-2004-99, Sep. 2002.

“36Mb DDR SIO SRAM 2-Word Burst,” Micron Technology Inc.,
Datasheet, Dec. 2002.

256 Mb Double Data Rate (DDR) SDRAM,” Micron Technology Inc.,
Datasheet, Oct. 2002.

“Virtex-E 1.8 V Field Programmable Gate Arrays,” Xilinx Inc., Xilinx
Datasheet (DS022), 2001.

“IBM, Xilinx shake up art of chip design with new custom product, IBM
and Xilinx, Press Release,” IBM, http://www-3.ibm.com/chips/prod-
ucts/asics/products/cores/efpga.html, Jun. 2002.

D. E. Taylor, J. S. Turner, J. W. Lockwood, and E. L. Horta, “Dynamic
hardware plugins (DHP): Exploiting reconfigurable hardware for high-
performance programmable routers,” Computer Networks, vol. 38, pp.
295-310, Feb. 2002.

M. Arnold and H. Corporaal, “Designing domain-specific processors,”
in Proc. 9th Int. Symp. Hardware/Software Codesign (CODES’01), Apr.
2001, pp. 61-66.

I.-J. Huang and A. M. Despain, “Generating instruction sets and mi-
croarchitectures from applications,” in Proc. Int. Conf. Computer Aided
Design (ICCAD’94), Nov. 1994, pp. 391-396.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

David E. Taylor (M’04) is currently developing
high-performance reconfigurable hardware systems
at Exegy Inc. Prior to joining Exegy, he was a
Visiting Assistant Professor in the Department of
Computer Science and Engineering and was actively
involved in computer communications research at
the Applied Research Laboratory at Washington
University in Saint Louis. He received the Doctor of
Science degree in computer engineering in August
2004, M.S. degrees in electrical and computer engi-
neering in May 2002, and B.S. degrees in electrical
and computer engineering in December 1998 from Washington University in
Saint Louis. His research interests include the design and analysis of scalable
searching algorithms and architectures, IP lookup and packet classification
algorithms, high-performance reconfigurable hardware systems, programmable
routers, and network processors. He held a Research Internship with the net-
work processor hardware group at the IBM Zurich Research Laboratory during
the summer of 2002. Dr. Taylor has been a member of the ACM since 2004.

Andreas Herkersdorf (M’91) is a Full Professor
in the Department of Electrical Engineering and In-
formation Technology at the Technical University of
Munich (TUM), Germany. He received a Dipl.-Ing.
degree in electrical engineering from TUM in 1987,
and a Ph.D., also in electrical engineering, from
the Swiss Federal Institute of Technology (ETH),
Zurich, in 1991. Between 1988 and 2003 he was with
the IBM Zurich Research Laboratory, Ruschlikon,
Switzerland. In September 2003 he became head
of the Institute of Integrated Systems at TUM. His
research interests include reconfigurable multi-processor VLSI architectures
for IP networking and automotive applications, system level SoC modeling and
design space exploration methods, and autonomic computing.

Andreas C. Doring is a Research Staff Member at
the IBM Zurich Research Laboratory. He received
his Ph.D. from the University of Luebeck (2001),
and his Diploma degree in computer science from
the University of Karlsruhe in 1995. His current
research topic is address translation for server I/O.
Further research interests include filesystems, appli-
cation-specific reconfigurable circuits, fault-tolerant,
and parallel computing.

Gero Dittmann received a Dipl.-Ing. (M.Sc.) degree
in electrical engineering from Darmstadt University
of Technology, Germany, in 2000. In the same year,
he joined the IBM Zurich Research Laboratory in
Switzerland where he is working as a researcher in
the I/O Network Architecture group. Furthermore,
he is pursuing a Ph.D. at the Computer Engineering
and Networks Laboratory (TIK) of the Swiss Federal
Institute of Technology (ETH) in Zurich. His current
research interests include ASIP design methods,
communication networks, and interconnect architec-
tures for high-performance computing systems.

	toc
	Robust Header Compression (ROHC) in Next-Generation Network Proc
	David E. Taylor, Member, IEEE, Andreas Herkersdorf, Member, IEEE
	I. I NTRODUCTION

	Fig.€1. Example scenario of ROHC compression/decompression of IP
	Fig.€2. Block diagram of 3G wireless access network. Link bandwi
	II. A B RIEF H ISTORY OF H EADER C OMPRESSION
	III. H EADER C OMPRESSION W ITH ROHC
	A. Field Encoding Methods
	1) Least Significant Bits (LSB) Encoding: LSB encoding is applie
	a) LSB Interpretation Interval Function: The LSB interpretation

	2) Window-Based LSB (WLSB) Encoding: Window-based LSB (WLSB) Enc
	3) Scaled RTP Timestamp Encoding: Due to fixed sampling periods
	4) IPv4 Identifier (IP-ID) Offset Encoding: Offset encoding assu

	Fig.€3. Logical block diagram of ROHC Compressor/Decompressor fo
	B. CRC
	IV. F UNCTIONAL A NALYSIS OF ROHC
	A. Context Processor
	1) Packet Parser: The Packet Parser may be viewed as a finite st
	2) Compression/Decompression Finite State Machines (CFSM/DFSM):
	3) Mode Finite State Machine (MFSM): We assume that a mode varia

	B. Timer
	C. Field Encoding & Decoding

	Fig.€4. Block diagram of RTP Sequence Number (RTPSN) Encoder emp
	1) WLSB Encoder: As previously stated, WLSB encoding chooses the
	b) Parameterizing the LSB Selection Function: Let p be represe
	c) Efficient Implementation: While (9) may easily be specified i

	2) LSB Decoder: As previously stated, the decompressor derives t

	Fig.€5. Example of LSB Selection Function computation via bit st
	d) Efficient Implementation: Let w be the left end-point of th
	D. CRC

	Fig. 6. Example of LSB Decoder operation, where $w =v_{{\rm ref}
	V. A RCHITECTURAL I MPLICATIONS FOR N ETWORK P ROCESSORS

	TABLE I A REA AND P ROPAGATION D ELAY FOR CRC C ALCULATION . ASI
	Fig.€7. Block diagram of a generic network processor architectur
	A. Functional Placement

	Fig.€8. Logical block diagram of ingress data path including ROH
	Fig.€9. Logical block diagram of egress data path including ROHC
	B. Frame Reassembly & Packet Parsing
	C. Packet Classification
	D. Timestamping
	E. Scheduling & Queuing
	F. Memory Resources
	1) Space Requirements: Since the compressor must maintain multip

	Fig.€10. First-order memory bandwidth usage model for ROHC compr
	2) Bandwidth Requirements: ROHC memory bandwidth consumption wil

	Fig.€11. Memory bandwidth scaling factor relative to supported l
	VI. O FFLOADING ROHC F UNCTIONS TO A PPLICATION -S PECIFIC H ARD
	A. Performance, Flexibility, & Size
	1) Reconfigurable Hardware Assists: We designed and implemented

	TABLE II R ECONFIGURABLE H ARDWARE R ESOURCE U SAGE AND P ERFORM
	Fig.€12. Area versus throughput tradeoff for various ROHC header
	TABLE III ASIC R ESOURCE U SAGE AND P ERFORMANCE E STIMATES FOR
	2) Application-Specific Instruction-Set Processors (ASIPs): An A
	3) Application-Specific Integrated Circuits (ASICs): As the ROHC
	B. Interconnection Architecture

	Fig.€13. Additional interconnect bandwidth requirement relative
	VII. C ONCLUSION

	Effnet: An Introduction to EffnetEdge Header Compression Technol
	C. Bormann et al., RObust Header Compression (ROHC): Framework a
	M. West, ROHC implementation experience, presented at the ROHC W
	H. Schulzrinne et al., RTP: A Transport Protocol for Real-Time A
	V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Lin
	M. Degermark, B. Nordgren, and S. Pink, IP Header Compression, I
	S. Casner and V. Jacobson, Compressing IP/UDP/RTP Headers for Lo
	L.-E. Jonsson, M. Degermark, H. Hannu, and K. Svanbro, RObust ch
	L.-A. Larzon, M. Degermark, and S. Pink, Efficient Use of Wirele
	L.-A. Larzon, H. Hannu, L.-E. Jonsson, and K. Svanbro, Efficient
	M. Thoren, Ericsson Compression Technology Boosts 3G Network Cap
	L.-E. Jonsson, RObust Header Compression (ROHC): Requirements an
	L.-E. Jonsson and G. Pelletier, RObust Header Compression (ROHC)
	C. Bormann, RObust Header Compression (ROHC) over PPP, IETF Netw
	G. Dittmann . (2000) Programmable Finite State Machines for High
	D. E. Taylor, A. Herkersdorf, A. Döring, and G. Dittmann, Robust

	36Mb DDR SIO SRAM 2-Word Burst, Micron Technology Inc., Datashee
	256 Mb Double Data Rate (DDR) SDRAM, Micron Technology Inc., Dat
	Virtex-E 1.8 V Field Programmable Gate Arrays, Xilinx Inc., Xili
	IBM, Xilinx shake up art of chip design with new custom product,
	D. E. Taylor, J. S. Turner, J. W. Lockwood, and E. L. Horta, Dyn
	M. Arnold and H. Corporaal, Designing domain-specific processors
	I.-J. Huang and A. M. Despain, Generating instruction sets and m

